Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Energy Stable Well-balanced Scheme for the Barotropic Euler System with Gravity under the Anelastic Scaling (2405.00559v1)

Published 1 May 2024 in math.NA and cs.NA

Abstract: We design and analyse an energy stable, structure preserving, well-balanced and asymptotic preserving (AP) scheme for the barotropic Euler system with gravity in the anelastic limit. The key to energy stability is the introduction of appropriate velocity shifts in the convective fluxes of mass and momenta. The semi-implicit in time and finite volume in space fully-discrete scheme supports the positivity of density and yields the consistency with the weak solutions of the Euler system upon mesh refinement. The numerical scheme admits the discrete hydrostatic states as solutions and the stability of numerical solutions in terms of the relative energy leads to well-balancing. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Mach/Froude numbers and the scheme's asymptotic consistency with the anelastic Euler system is rigorously shown on the basis of apriori energy estimates. The numerical scheme is resolved in two steps: by solving a non-linear elliptic problem for the density and a subsequent explicit computation of the velocity. Results from several benchmark case studies are presented to corroborate the proposed claims.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. An asymptotic preserving and energy stable scheme for the barotropic Euler system in the incompressible limit. J. Sci. Comput., 97(3):Paper No. 73, 31, 2023.
  2. An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit. Appl. Numer. Math., 198:375–400, 2024.
  3. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 25(6):2050–2065, 2004.
  4. P. R. Bannon. On the anelastic approximation for a compressible atmosphere. J. Atmospheric Sci., 53(23):3618–3628, 1996.
  5. A well-balanced semi-implicit IMEX finite volume scheme for ideal magnetohydrodynamics at all Mach numbers. J. Sci. Comput., 98(2):Paper No. 34, 26, 2024.
  6. IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys., 16(2):307–347, 2014.
  7. High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput., 68(3):975–1001, 2016.
  8. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. M2AN Math. Model. Numer. Anal., 39(3):477–486, 2005.
  9. G. Bruell and E. Feireisl. On a singular limit for stratified compressible fluids. Nonlinear Anal. Real World Appl., 44:334–346, 2018.
  10. J. Březina and E. Feireisl. Measure-valued solutions to the complete Euler system. J. Math. Soc. Japan, 70(4):1227–1245, 2018.
  11. N. Chaudhuri. Multiple scales and singular limits of perfect fluids. J. Evol. Equ., 22(1):Paper No. 5, 32, 2022.
  12. A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.
  13. An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification. J. Comput. Phys., 343:235–270, 2017.
  14. K. Deimling. Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.
  15. Semi-implicit staggered mesh scheme for the multi-layer shallow water system. C. R. Math. Acad. Sci. Paris, 355(12):1298–1306, 2017.
  16. Energy-stable staggered schemes for the Shallow Water equations. J. Comput. Phys., 401:109051, 24, 2020.
  17. D. R. Durran. Improving the anelastic approximation. J. Atmospheric Sci., 46(11):1453–1461, 1988.
  18. D. R. Durran. Numerical methods for wave equations in geophysical fluid dynamics, volume 32 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999.
  19. Finite volume methods. In Handbook of numerical analysis, Vol. VII, volume VII of Handb. Numer. Anal., pages 713–1020. North-Holland, Amsterdam, 2000.
  20. F. Fanelli and E. Zatorska. Low Mach number limit for the degenerate Navier-Stokes equations in presence of strong stratification. Comm. Math. Phys., 400(3):1463–1506, 2023.
  21. On oscillatory solutions to the complete Euler system. J. Differential Equations, 269(2):1521–1543, 2020.
  22. E. Feireisl and M. Lukáčová-Medvid’ová. Convergence of a mixed finite element–finite volume scheme for the isentropic Navier-Stokes system via dissipative measure-valued solutions. Found. Comput. Math., 18(3):703–730, 2018.
  23. Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Comm. Partial Differential Equations, 33(1-3):157–176, 2008.
  24. E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel, 2009.
  25. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys., 230(14):5587–5609, 2011.
  26. On the weak consistency of finite volumes schemes for conservation laws on general meshes. SeMA J., 76(4):581–594, 2019.
  27. Lax–Wendroff consistency of finite volume schemes for systems of non linear conservation laws: extension to staggered schemes. SeMA J., 79(2):333–354, 2022.
  28. Convergence of the marker-and-cell scheme for the incompressible Navier-Stokes equations on non-uniform grids. Found. Comput. Math., 18(1):249–289, 2018.
  29. Consistent internal energy based schemes for the compressible Euler equations. 24:119–154, [2021] ©2021.
  30. Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations. IMA J. Numer. Anal., 36(2):543–592, 2016.
  31. L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl., 39(9-10):135–159, 2000.
  32. A consistent quasi-second-order staggered scheme for the two-dimensional shallow water equations. IMA J. Numer. Anal., 43(1):99–143, 2023.
  33. Low Mach number limit of some staggered schemes for compressible barotropic flows. Math. Comp., 90(329):1039–1087, 2021.
  34. S. Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.), 3(2):177–216, 2012.
  35. R. Klein. Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM Z. Angew. Math. Mech., 80(11-12):765–777, 2000. Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl.
  36. R. Klein. Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn., 23(3):161–195, 2009.
  37. D. Maltese and A. Novotný. Implicit MAC scheme for compressible Navier-Stokes equations: low Mach asymptotic error estimates. IMA J. Numer. Anal., 41(1):122–163, 2021.
  38. N. Masmoudi. Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. (9), 88(3):230–240, 2007.
  39. Three-dimensional spherical simulations of solar convection. I. Differential rotation and pattern evolution achieved with laminar and turbulent states. The Astrophysical Journal, 532(1):593, March 2000.
  40. Y. Ogura and N. A. Phillips. Scale analysis of deep and shallow convection in the atmosphere. J. Atmospheric Sci., 19(2):173–179, 1962.
  41. An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys., 420:109723, 25, 2020.
  42. K. Xu. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms. J. Comput. Phys., 178(2):533–562, 2002.
  43. M. Zenk. On Numerical Methods for Astrophysical Applications. Doctoral thesis, Universität Würzburg, 2018.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com