Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Asymptotic Preserving and Energy Stable Scheme for the Euler System with Congestion Constraint (2406.14168v1)

Published 20 Jun 2024 in math.NA and cs.NA

Abstract: In this work, we design and analyze an asymptotic preserving (AP), semi-implicit finite volume scheme for the scaled compressible isentropic Euler system with a singular pressure law known as the congestion pressure law. The congestion pressure law imposes a maximal density constraint of the form $0\leq \varrho <1$, and the scaling introduces a small parameter $\varepsilon$ in order to control the stiffness of the density constraint. As $\varepsilon\to 0$, the solutions of the compressible system converge to solutions of the so-called free-congested Euler equations that couples compressible and incompressible dynamics. We show that the proposed scheme is positivity preserving and energy stable. In addition, we also show that the numerical densities satisfy a discrete variant of the constraint. By means of extensive numerical case studies, we verify the efficacy of the scheme and show that the scheme is able to capture the two dynamics in the limiting regime, thereby proving the AP property.

Summary

We haven't generated a summary for this paper yet.