Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Mueller matrix polarimetry using generalized measurements (2405.00432v1)

Published 1 May 2024 in physics.optics

Abstract: Mueller matrices provide a complete description of a medium's response to excitation by polarized light, and their characterization is important across a broad range of applications from ellipsometry in material science to polarimetry in biochemistry, medicine and astronomy. Here we introduce single-shot Mueller matrix polarimetry based on generalized measurements performed with a Poincar\'e beam. We determine the Mueller matrix of a homogeneous medium with unknown optical activity by detecting its optical response to a Poincar\'e beam, which across its profile contains all polarization states, and analyze the resulting polarization pattern in terms of four generalized measurements, which are implemented as a path-displaced Sagnac interferometer. We illustrate the working of our Mueller matrix polarimetry on the example of tilted and rotated wave plates and find excellent agreement with predictions as well as alternative Stokes measurements. After initial calibration, the alignment of the device stays stable for up to 8 hours, promising suitability for the dynamic characterization of Mueller matrices that change in time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. D. Stifter, P. Burgholzer, O. Höglinger, et al., “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” \JournalTitleAppl. Phys. A 76, 947–951 (2003).
  2. E. Hearn, “Chapter 6 - experimental stress analysis,” in Mechanics of Materials 2 (Third Edition), E. Hearn, ed. (Butterworth-Heinemann, Oxford, 1997), pp. 166–192, third edition ed.
  3. Z. Li, C. Cui, X. Zhou, et al., “Characterization of amorphous carbon films from 5 nm to 200 nm on single-side polished a-plane sapphire substrates by spectroscopic ellipsometry,” \JournalTitleFrontiers in Physics 10 (2022).
  4. P. M. Johnson, D. A. Olson, S. Pankratz, et al., “Structure of the liquid-crystal ferrielectric phases as determined by ellipsometry,” \JournalTitlePhys. Rev. Lett. 84, 4870–4873 (2000).
  5. J. Hough, “Polarimetry: a powerful diagnostic tool in astronomy,” \JournalTitleAstronomy & Geophysics 47, 3.31–3.35 (2006).
  6. B. W. Lites, M. Kubo, H. Socas-Navarro, et al., “The horizontal magnetic flux of the quiet-sun internetwork as observed with the hinode spectro-polarimeter,” \JournalTitleThe Astrophysical Journal 672, 1237 (2008).
  7. E. Costa, P. Soffitta, R. Bellazzini, et al., “An efficient photoelectric x-ray polarimeter for the study of black holes and neutron stars,” \JournalTitleNature 411, 662–665 (2001).
  8. A. V. Syroeshkin, T. V. Pleteneva, E. V. Uspenskaya, et al., “Polarimetric research of pharmaceutical substances in aqueous solutions with different water isotopologues ratio,” \JournalTitleInternational Journal of Applied Pharmaceutics 10, 243 (2018).
  9. D. N. Ignatenko, A. V. Shkirin, Y. P. Lobachevsky, and S. V. Gudkov, “Applications of mueller matrix polarimetry to biological and agricultural diagnostics: A review,” \JournalTitleApplied Sciences 12 (2022).
  10. A. Arango-Restrepo, O. Arteaga, D. Barragán, and J. M. Rubi, “Chiral symmetry breaking induced by energy dissipation,” \JournalTitlePhys. Chem. Chem. Phys. 25, 9238–9248 (2023).
  11. C. He, H. He, J. Chang, et al., “Polarisation optics for biomedical and clinical applications: a review,” \JournalTitleLight: Science & Applications 10 (2021).
  12. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” \JournalTitleJournal of biomedical optics 16, 110801–11080129 (2011).
  13. J. C. Ramella-Roman, I. Saytashev, and M. Piccini, “A review of polarization-based imaging technologies for clinical and preclinical applications,” \JournalTitleJournal of Optics 22, 123001 (2020).
  14. H. He, R. Liao, N. Zeng, et al., “Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen,” \JournalTitleJournal of Lightwave Technology 37, 2534–2548 (2019).
  15. I. Ahmad, A. Khaliq, M. Iqbal, and S. Khan, “Mueller matrix polarimetry for characterization of skin tissue samples: A review,” \JournalTitlePhotodiagnosis and Photodynamic Therapy 30, 101708 (2020).
  16. M. H. Smith, P. D. Burke, A. Lompado, et al., “Mueller matrix imaging polarimetry in dermatology,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, vol. 3911 T. Vo-Dinh, W. S. G. M.D., and D. A. B. M.D., eds., International Society for Optics and Photonics (SPIE, 2000), pp. 210 – 216.
  17. I. Pardo, S. Bian, J. Gomis-Brescó, et al., “Wide-field mueller matrix polarimetry for spectral characterization of basic biological tissues: Muscle, fat, connective tissue, and skin,” \JournalTitleJournal of Biophotonics p. e202300252 (2023).
  18. V. V. Tuchin, “Polarized light interaction with tissues,” \JournalTitleJournal of Biomedical Optics 21, 071114 (2016).
  19. S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging mueller matrix methodologies for bulk tissue assessment,” \JournalTitleJournal of Biomedical Optics 20, 061104 (2015).
  20. D. Gottlieb and O. Arteaga, “Mueller matrix imaging with a polarization camera: application to microscopy,” \JournalTitleOpt. Express 29, 34723–34734 (2021).
  21. A. Z. Goldberg, “Quantum theory of polarimetry: From quantum operations to mueller matrices,” \JournalTitlePhys. Rev. Res. 2, 023038 (2020).
  22. D. Klyshko, “Multiphoton interference and polarization effects,” \JournalTitlePhysics Letters A 163, 349–355 (1992).
  23. A. Luis, “Chapter five - polarization in quantum optics,” (Elsevier, 2016), pp. 283–331.
  24. A. Z. Goldberg, “Chapter three - quantum polarimetry,” (Elsevier, 2022), pp. 185–274.
  25. P. G. Kwiat, K. Mattle, H. Weinfurter, et al., “New high-intensity source of polarization-entangled photon pairs,” \JournalTitlePhys. Rev. Lett. 75, 4337–4341 (1995).
  26. D. Bouwmeester, J.-W. Pan, K. Mattle, et al., “Experimental quantum teleportation,” \JournalTitleNature 390, 575–579 (1997).
  27. I. Dahl, “How to measure the mueller matrix of liquid-crystal cells,” \JournalTitleMeasurement Science and Technology 12, 1938 (2001).
  28. M. K. Lars M.S. Aas, Pål G. Ellingsen and M. Lindgren, “Dynamic response of a fast near infra-red mueller matrix ellipsometer,” \JournalTitleJournal of Modern Optics 57, 1603–1610 (2010).
  29. Y. Li, W. Jia, R. Chen, et al., “Novel measurement of Mueller matrix for cells,” in 2008 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Applications, vol. 7160 S. Ye, G. Zhang, and J. Ni, eds., International Society for Optics and Photonics (SPIE, 2009), p. 716007.
  30. B. I. Gramatikov, “Using a dynamic mueller matrix in modeling of retinal birefringence scanning systems,” \JournalTitleResults in Optics 12, 100437 (2023).
  31. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, et al., “Mueller matrix retinal imager with optimized polarization conditions,” \JournalTitleOpt. Express 16, 21339–21354 (2008).
  32. H. Philpott, E. Garcia-Caurel, O. Guaitella, and A. Sobota, “Optimizing mueller polarimetry in noisy systems throughover-determination,” \JournalTitleAppl. Opt. 60, 9594–9606 (2021).
  33. R. Petkovšek, J. Petelin, J. Možina, and F. Bammer, “Fast ellipsometric measurements based on a single crystal photo-elastic modulator,” \JournalTitleOpt. Express 18, 21410–21418 (2010).
  34. S. Zhang, H. Jiang, H. Gu, et al., “High-speed mueller matrix ellipsometer with microsecond temporal resolution,” \JournalTitleOpt. Express 28, 10873–10887 (2020).
  35. M. Dubreuil, S. Rivet, B. L. Jeune, and J. Cariou, “Snapshot mueller matrix polarimeter by wavelength polarization coding,” \JournalTitleOpt. Express 15, 13660–13668 (2007).
  36. Y. Feng, J. Huang, J. Zhou, et al., “Ultrafast mueller matrix polarimetry with 10 nanosecond temporal resolution based on optical time-stretch,” \JournalTitleOptics Letters 47, 1403 (2022).
  37. F. Töppel, A. Aiello, C. Marquardt, et al., “Classical entanglement in polarization metrology,” \JournalTitleNew Journal of Physics 16, 073019 (2014).
  38. R. D. Hawley, J. Cork, N. Radwell, and S. Franke-Arnold, “Passive broadband full stokes polarimeter using a fresnel cone,” \JournalTitleScientific Reports 9 (2019).
  39. J. Zhang, F. Fan, W. Fu, et al., “Broadband real-time full-stokes polarimetry by multi-tasking geometric phase element array,” \JournalTitleJournal of Optics 24, 045801 (2022).
  40. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full poincaré beams,” \JournalTitleOpt. Express 18, 10777–10785 (2010).
  41. J. C. Suárez-Bermejo, J. C. González de Sande, M. Santarsiero, and G. Piquero, “Mueller matrix polarimetry using full Poincaré beams,” \JournalTitleOptics and Lasers in Engineering 122, 134–141 (2019).
  42. J. C. Suárez-Bermejo, J. C. González de Sande, G. Piquero, et al., “Full Poincaré Mueller Polarimetry Using a CCD Camera,” \JournalTitlePhotonics 9, 1–12 (2022).
  43. M. A. Al Khafaji, C. M. Cisowski, H. Jimbrown, et al., “Single-shot characterization of vector beams by generalized measurements,” \JournalTitleOptics Express 30, 22396 (2022).
  44. D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” \JournalTitlePhysical Review A - Atomic, Molecular, and Optical Physics 64, 15 (2001).
  45. J. Řeháček, B.-G. Englert, and D. Kaszlikowski, “Minimal qubit tomography,” \JournalTitlePhys. Rev. A 70, 052321 (2004).
  46. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, “Experimental polarization state tomography using optimal polarimeters,” \JournalTitlePhysical Review A 74, 022309–1–7 (2006).
  47. R. B. M. Clarke, V. M. Kendon, A. Chefles, et al., “Experimental realization of optimal detection strategies for overcomplete states,” \JournalTitlePhys. Rev. A 64, 012303 (2001).
  48. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric informationally complete quantum measurements,” \JournalTitleJournal of Mathematical Physics 45, 2171–2180 (2004).
  49. C. Paiva-Sánchez, E. Burgos-Inostroza, O. Jiménez, and A. Delgado, “Quantum tomography via equidistant states,” \JournalTitlePhys. Rev. A 82, 032115 (2010).
  50. W. M. Pimenta, B. Marques, M. A. D. Carvalho, et al., “Minimal state tomography of spatial qubits using a spatial light modulator,” \JournalTitleOpt. Express 18, 24423–24433 (2010).
  51. W. R. Cardoso, D. F. Barros, M. R. Barros, and S. Pádua, “Implementing positive-operator-valued-measurement elements in photonic circuits for performing minimum quantum state tomography of path qudits,” \JournalTitlePhys. Rev. A 99, 062324 (2019).
  52. A. Selyem, C. Rosales-Guzmán, S. Croke, et al., “Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections,” \JournalTitlePhysical Review A 100, 063842 (2019).
  53. C. Rosales-Guzmán, X. B. Hu, A. Selyem, et al., “Polarisation-insensitive generation of complex vector modes from a digital micromirror device,” \JournalTitleScientific Reports 10, 1–9 (2020).
  54. “Thorabs: Mounted multi-order wave plates,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=713&pn=WPMQ05M-633. Accessed: 2023-10-03.
  55. H. Gu, X. Chen, C. Zhang, et al., “Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer,” \JournalTitleJournal of Optics (United Kingdom) 20 (2018).
  56. “The Crystan Handbook of Infra-Red and Ultra-Violet Optical Materials,” https://issuu.com/crystran/docs/handbook_2016_web (2020). Accessed: 2023-10-03.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com