Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstructing networks from simple and complex contagions (2405.00129v3)

Published 30 Apr 2024 in cs.SI, q-bio.PE, and stat.ML

Abstract: Network scientists often use complex dynamic processes to describe network contagions, but tools for fitting contagion models typically assume simple dynamics. Here, we address this gap by developing a nonparametric method to reconstruct a network and dynamics from a series of node states, using a model that breaks the dichotomy between simple pairwise and complex neighborhood-based contagions. We then show that a network is more easily reconstructed when observed through the lens of complex contagions if it is dense or the dynamic saturates, and that simple contagions are better otherwise.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. R. Pastor-Satorras and A. Vespignani, Epidemic Spreading in Scale-Free Networks, Physical Review Letters 86, 3200 (2001).
  2. J. C. Miller, A Note on the Derivation of Epidemic Final Sizes, Bulletin of Mathematical Biology 74, 2125 (2012).
  3. L. Peel, T. P. Peixoto, and M. De Domenico, Statistical inference links data and theory in network science, Nature Communications 13, 6794 (2022).
  4. J.-G. Young, G. T. Cantwell, and M. E. J. Newman, Bayesian inference of network structure from unreliable data, Journal of Complex Networks 8, 10.1093/comnet/cnaa046 (2021).
  5. S. G. Shandilya and M. Timme, Inferring network topology from complex dynamics, New Journal of Physics 13, 013004 (2011).
  6. T. P. Peixoto, Network Reconstruction and Community Detection from Dynamics, Physical Review Letters 123, 128301 (2019).
  7. C. Gray, L. Mitchell, and M. Roughan, Bayesian Inference of Network Structure From Information Cascades, IEEE Transactions on Signal and Information Processing over Networks 6, 371 (2020).
  8. T. W. Valente, Network Models of the Diffusion of Innovations (Hampton Press, 1995).
  9. D. Centola, The Spread of Behavior in an Online Social Network Experiment, Science 329, 1194 (2010).
  10. L. Hébert-Dufresne, S. V. Scarpino, and J.-G. Young, Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement, Nature Physics 16, 426 (2020b).
  11. C. Murphy, E. Laurence, and A. Allard, Deep learning of contagion dynamics on complex networks, Nature Communications 12, 4720 (2021).
  12. G. St-Onge, L. Hébert-Dufresne, and A. Allard, Nonlinear bias toward complex contagion in uncertain transmission settings, Proceedings of the National Academy of Sciences 121, e2312202121 (2024).
  13. P. S. Dodds and D. J. Watts, Universal Behavior in a Generalized Model of Contagion, Physical Review Letters 92, 218701 (2004).
  14. W. W. Zachary, An Information Flow Model for Conflict and Fission in Small Groups, Journal of Anthropological Research 33, 452 (1977).
  15. J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology 143, 29 (1982).
  16. H. Robbins and S. Monro, A Stochastic Approximation Method, The Annals of Mathematical Statistics 22, 400 (1951).
  17. O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology 28, 365 (1990).
  18. P. Erdös and A. Rényi, On Random Graphs. I, Publicationes Mathematicae 6, 290 (1959).
  19. M. E. J. Newman, Properties of highly clustered networks, Physical Review E 68, 026121 (2003).
  20. N. Landry, W. Thompson, and J.-G. Young, nwlandry/complex-network-reconstruction: v0.0 (2024).
  21. P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social Networks 5, 109 (1983).
  22. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440 (1998).
  23. M. Jerrum and G. B. Sorkin, The Metropolis algorithm for graph bisection, Discrete Applied Mathematics 82, 155 (1998).

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com