Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long ties accelerate noisy threshold-based contagions (1810.03579v5)

Published 8 Oct 2018 in cs.SI, math.PR, and physics.soc-ph

Abstract: Network structure can affect when and how widely new ideas, products, and behaviors are adopted. In widely-used models of biological contagion, interventions that randomly rewire edges (on average making them "longer") accelerate spread. However, there are other models relevant to social contagion, such as those motivated by myopic best-response in games with strategic complements, in which an individual's behavior is described by a threshold number of adopting neighbors above which adoption occurs (i.e., complex contagions). Recent work has argued that highly clustered, rather than random, networks facilitate spread of these complex contagions. Here we show that minor modifications to this model, which make it more realistic, reverse this result, thereby harmonizing qualitative facts about how network structure affects contagion. To model the trade-off between long and short edges we analyze the rate of spread over networks that are the union of circular lattices and random graphs on $n$ nodes. Allowing for noise in adoption decisions (i.e., adoptions below threshold) to occur with order ${n}{-1/\theta}$ probability along at least some "short" cycle edges is enough to ensure that random rewiring accelerates the spread of a noisy threshold-$\theta$ contagion. This conclusion also holds under partial but frequent enough rewiring and when adoption decisions are reversible but infrequently so, as well as in high-dimensional lattice structures that facilitate faster-expanding contagions. Simulations illustrate the robustness of these results to several variations on this noisy best-response behavior. Hypothetical interventions that randomly rewire existing edges or add random edges (versus adding "short", triad-closing edges) in hundreds of empirical social networks reduce time to spread.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dean Eckles (23 papers)
  2. Elchanan Mossel (156 papers)
  3. M. Amin Rahimian (31 papers)
  4. Subhabrata Sen (42 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com