Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Density of States, Black Holes and the Emergent String Conjecture (2405.00083v2)

Published 30 Apr 2024 in hep-th

Abstract: We study universal features of the density of one-particle states $\rho(E)$ in weakly coupled theories of gravity at energies above the quantum gravity cutoff $\Lambda$, defined as the scale suppressing higher-derivative corrections to the Einstein--Hilbert action. Using thermodynamic properties of black holes, we show that in asymptotically flat spacetimes, certain features of $\rho(E)$ above the black hole threshold $M_{\rm min}$ are an indicator for the existence of large extra dimensions, and cannot be reproduced by any lower-dimensional field theory with finitely many fields satisfying the weak energy condition. Based on the properties of gravitational scattering amplitudes, we argue that there needs to exist a (possibly higher-dimensional) effective description of gravity valid up to the cutoff $\Lambda$. Combining this with thermodynamic arguments we demonstrate that $\rho(E)$ has to grow exponentially for energies $\Lambda \ll E \ll M_{\rm min}$. Furthermore we show that the tension of any weakly coupled $p$-brane with $p\geq 1$ is bounded from below by $\Lambda{p+1}$. We use this to argue that any tower of weakly coupled states with mass below $\Lambda$ has to be a Kaluza--Klein (KK) tower. Altogether these results indicate that in gravitational weak-coupling limits the lightest tower of states is either a KK tower, or has an exponentially growing degeneracy thereby resembling a string tower. This provides evidence for the Emergent String Conjecture without explicitly relying on string theory or supersymmetry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. C. Vafa, “The String landscape and the swampland,” arXiv:hep-th/0509212 [hep-th].
  2. H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B766 (2007) 21–33, arXiv:hep-th/0605264 [hep-th].
  3. E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 no. 6, (2019) 1900037, arXiv:1903.06239 [hep-th].
  4. M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I. Valenzuela, “Lectures on the Swampland Program in String Compactifications,” arXiv:2102.01111 [hep-th].
  5. N. B. Agmon, A. Bedroya, M. J. Kang, and C. Vafa, “Lectures on the string landscape and the Swampland,” arXiv:2212.06187 [hep-th].
  6. G. Dvali, “Black Holes and Large N Species Solution to the Hierarchy Problem,” Fortsch. Phys. 58 (2010) 528–536, arXiv:0706.2050 [hep-th].
  7. G. Dvali and M. Redi, “Black Hole Bound on the Number of Species and Quantum Gravity at LHC,” Phys. Rev. D 77 (2008) 045027, arXiv:0710.4344 [hep-th].
  8. G. Dvali and D. Lust, “Evaporation of Microscopic Black Holes in String Theory and the Bound on Species,” Fortsch. Phys. 58 (2010) 505–527, arXiv:0912.3167 [hep-th].
  9. G. Dvali and C. Gomez, “Species and Strings,” arXiv:1004.3744 [hep-th].
  10. G. Dvali, C. Gomez, and D. Lust, “Black Hole Quantum Mechanics in the Presence of Species,” Fortsch. Phys. 61 (2013) 768–778, arXiv:1206.2365 [hep-th].
  11. D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Moduli-dependent Species Scale,” arXiv:2212.06841 [hep-th].
  12. D. van de Heisteeg, C. Vafa, and M. Wiesner, “Bounds on Species Scale and the Distance Conjecture,” Fortsch. Phys. 71 no. 10-11, (2023) 2300143, arXiv:2303.13580 [hep-th].
  13. N. Cribiori, M. Dierigl, A. Gnecchi, D. Lust, and M. Scalisi, “Large and small non-extremal black holes, thermodynamic dualities, and the Swampland,” JHEP 10 (2022) 093, arXiv:2202.04657 [hep-th].
  14. D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Bounds on field range for slowly varying positive potentials,” JHEP 02 (2024) 175, arXiv:2305.07701 [hep-th].
  15. N. Cribiori and D. Lüst, “A Note on Modular Invariant Species Scale and Potentials,” Fortsch. Phys. 71 no. 10-11, (2023) 2300150, arXiv:2306.08673 [hep-th].
  16. D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Species Scale in Diverse Dimensions,” arXiv:2310.07213 [hep-th].
  17. A. Castellano, A. Herráez, and L. E. Ibáñez, “On the Species Scale, Modular Invariance and the Gravitational EFT expansion,” arXiv:2310.07708 [hep-th].
  18. J. Calderón-Infante, M. Delgado, and A. M. Uranga, “Emergence of species scale black hole horizons,” JHEP 01 (2024) 003, arXiv:2310.04488 [hep-th].
  19. A. Bedroya, C. Vafa, and D. H. Wu, “The Tale of Three Scales: the Planck, the Species, and the Black Hole Scales,” arXiv:2403.18005 [hep-th].
  20. R. Gregory and R. Laflamme, “Black strings and p-branes are unstable,” Phys. Rev. Lett. 70 (1993) 2837–2840, arXiv:hep-th/9301052.
  21. S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings from infinite distance limits,” JHEP 02 (2022) 190, arXiv:1910.01135 [hep-th].
  22. R. Álvarez-García, D. Kläwer, and T. Weigand, “Membrane limits in quantum gravity,” Phys. Rev. D 105 no. 6, (2022) 066024, arXiv:2112.09136 [hep-th].
  23. S.-J. Lee, W. Lerche, and T. Weigand, “Tensionless Strings and the Weak Gravity Conjecture,” JHEP 10 (2018) 164, arXiv:1808.05958 [hep-th].
  24. S.-J. Lee, W. Lerche, and T. Weigand, “A Stringy Test of the Scalar Weak Gravity Conjecture,” Nucl. Phys. B938 (2019) 321–350, arXiv:1810.05169 [hep-th].
  25. S.-J. Lee, W. Lerche, and T. Weigand, “Modular Fluxes, Elliptic Genera, and Weak Gravity Conjectures in Four Dimensions,” JHEP 08 (2019) 104, arXiv:1901.08065 [hep-th].
  26. S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings, duality and weak coupling limits for two-form fields,” JHEP 02 (2022) 096, arXiv:1904.06344 [hep-th].
  27. F. Baume, F. Marchesano, and M. Wiesner, “Instanton Corrections and Emergent Strings,” JHEP 04 (2020) 174, arXiv:1912.02218 [hep-th].
  28. D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, “Quantum corrections in 4d N𝑁Nitalic_N = 1 infinite distance limits and the weak gravity conjecture,” JHEP 03 (2021) 252, arXiv:2011.00024 [hep-th].
  29. S.-J. Lee, W. Lerche, and T. Weigand, “Physics of infinite complex structure limits in eight dimensions,” JHEP 06 (2022) 042, arXiv:2112.08385 [hep-th].
  30. M. Wiesner, “Light strings and strong coupling in F-theory,” JHEP 04 (2023) 088, arXiv:2210.14238 [hep-th].
  31. A. Bedroya, S. Raman, and H.-C. Tarazi, “Non-BPS path to the string lamppost,” arXiv:2303.13585 [hep-th].
  32. M. Etheredge, B. Heidenreich, J. McNamara, T. Rudelius, I. Ruiz, and I. Valenzuela, “Running decompactification, sliding towers, and the distance conjecture,” JHEP 12 (2023) 182, arXiv:2306.16440 [hep-th].
  33. R. Álvarez-García, S.-J. Lee, and T. Weigand, “Non-minimal Elliptic Threefolds at Infinite Distance II: Asymptotic Physics,” arXiv:2312.11611 [hep-th].
  34. S. Lanza, F. Marchesano, L. Martucci, and I. Valenzuela, “The EFT stringy viewpoint on large distances,” JHEP 09 (2021) 197, arXiv:2104.05726 [hep-th].
  35. T. Rudelius, “Dimensional reduction and (Anti) de Sitter bounds,” JHEP 08 (2021) 041, arXiv:2101.11617 [hep-th].
  36. M. Etheredge, B. Heidenreich, S. Kaya, Y. Qiu, and T. Rudelius, “Sharpening the Distance Conjecture in diverse dimensions,” JHEP 12 (2022) 114, arXiv:2206.04063 [hep-th].
  37. M. Montero, C. Vafa, and I. Valenzuela, “The dark dimension and the Swampland,” JHEP 02 (2023) 022, arXiv:2205.12293 [hep-th].
  38. T. Rudelius, “Asymptotic scalar field cosmology in string theory,” JHEP 10 (2022) 018, arXiv:2208.08989 [hep-th].
  39. A. Bedroya and Y. Hamada, “Dualities from Swampland principles,” JHEP 01 (2024) 086, arXiv:2303.14203 [hep-th].
  40. I. Basile, D. Lust, and C. Montella, “Shedding black hole light on the emergent string conjecture,” arXiv:2311.12113 [hep-th].
  41. N. Cribiori, D. Lust, and C. Montella, “Species Entropy and Thermodynamics,” arXiv:2305.10489 [hep-th].
  42. I. Basile, N. Cribiori, D. Lust, and C. Montella, “Minimal Black Holes and Species Thermodynamics,” arXiv:2401.06851 [hep-th].
  43. J. Polchinski and A. Strominger, “Effective string theory,” Phys. Rev. Lett. 67 (1991) 1681–1684.
  44. D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl. Phys. B 303 (1988) 407–454.
  45. R. Brustein, G. Dvali, and G. Veneziano, “A Bound on the effective gravitational coupling from semiclassical black holes,” JHEP 10 (2009) 085, arXiv:0907.5516 [hep-th].
  46. T. Banks and W. Fischler, “A Model for high-energy scattering in quantum gravity,” arXiv:hep-th/9906038.
  47. I. Bah, Y. Chen, and J. Maldacena, “Estimating global charge violating amplitudes from wormholes,” JHEP 04 (2023) 061, arXiv:2212.08668 [hep-th].
  48. D. Mitchell and N. Turok, “Statistical Mechanics of Cosmic Strings,” Phys. Rev. Lett. 58 (1987) 1577.
  49. D. Mitchell and N. Turok, “Statistical Properties of Cosmic Strings,” Nucl. Phys. B 294 (1987) 1138–1163.
  50. A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.
  51. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.
  52. C. F. Cota, A. Mininno, T. Weigand, and M. Wiesner, “The asymptotic Weak Gravity Conjecture for open strings,” JHEP 11 (2022) 058, arXiv:2208.00009 [hep-th].
  53. L. Martucci, N. Risso, A. Valenti, and L. Vecchi, “Wormholes in the axiverse, and the species scale,” arXiv:2404.14489 [hep-th].
  54. D. J. Gross, “Two-dimensional QCD as a string theory,” Nucl. Phys. B 400 (1993) 161–180, arXiv:hep-th/9212149.
  55. G. T. Horowitz and J. Polchinski, “Selfgravitating fundamental strings,” Phys. Rev. D 57 (1998) 2557–2563, arXiv:hep-th/9707170.
  56. Y. Chen, J. Maldacena, and E. Witten, “On the black hole/string transition,” JHEP 01 (2023) 103, arXiv:2109.08563 [hep-th].
  57. A. Sen, “Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions,” JHEP 04 (2013) 156, arXiv:1205.0971 [hep-th].
  58. J. Calderón-Infante, A. Castellano, A. Herráez, and L. E. Ibáñez, “Entropy bounds and the species scale distance conjecture,” JHEP 01 (2024) 039, arXiv:2306.16450 [hep-th].
  59. A. M. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys. Lett. B 103 (1981) 207–210.
  60. S. Hamidi and C. Vafa, “Interactions on Orbifolds,” Nucl. Phys. B 279 (1987) 465–513.
  61. S. Caron-Huot, Z. Komargodski, A. Sever, and A. Zhiboedov, “Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude,” JHEP 10 (2017) 026, arXiv:1607.04253 [hep-th].
  62. F. A. Cerulus and A. Martin, “A lower bound for large-angle elastic scattering at high energies,” Phys. Lett. 8 (1964) 80–82.
  63. L. Buoninfante, J. Tokuda, and M. Yamaguchi, “New lower bounds on scattering amplitudes: non-locality constraints,” JHEP 01 (2024) 082, arXiv:2305.16422 [hep-th].
  64. D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197 (1987) 129–134.
  65. P. F. Mende and H. Ooguri, “Borel Summation of String Theory for Planck Scale Scattering,” Nucl. Phys. B 339 (1990) 641–662.
  66. D. Amati, M. Ciafaloni, and G. Veneziano, “Can Space-Time Be Probed Below the String Size?,” Phys. Lett. B 216 (1989) 41–47.
  67. A. Bedroya, “High energy scattering and string/black hole transition,” arXiv:2211.17162 [hep-th].
  68. S. B. Giddings and M. Srednicki, “High-energy gravitational scattering and black hole resonances,” Phys. Rev. D 77 (2008) 085025, arXiv:0711.5012 [hep-th].
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.