Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning of continuous and discrete variational ODEs with convergence guarantee and uncertainty quantification (2404.19626v3)

Published 30 Apr 2024 in math.NA, cs.NA, and math.DS

Abstract: The article introduces a method to learn dynamical systems that are governed by Euler--Lagrange equations from data. The method is based on Gaussian process regression and identifies continuous or discrete Lagrangians and is, therefore, structure preserving by design. A rigorous proof of convergence as the distance between observation data points converges to zero and lower bounds for convergence rates are provided. Next to convergence guarantees, the method allows for quantification of model uncertainty, which can provide a basis of adaptive sampling techniques. We provide efficient uncertainty quantification of any observable that is linear in the Lagrangian, including of Hamiltonian functions (energy) and symplectic structures, which is of interest in the context of system identification. The article overcomes major practical and theoretical difficulties related to the ill-posedness of the identification task of (discrete) Lagrangians through a careful design of geometric regularisation strategies and through an exploit of a relation to convex minimisation problems in reproducing kernel Hilbert spaces.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com