Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning discrete Lagrangians for variational PDEs from data and detection of travelling waves (2302.08232v3)

Published 16 Feb 2023 in math.NA and cs.NA

Abstract: The article shows how to learn models of dynamical systems from data which are governed by an unknown variational PDE. Rather than employing reduction techniques, we learn a discrete field theory governed by a discrete Lagrangian density $L_d$ that is modelled as a neural network. Careful regularisation of the loss function for training $L_d$ is necessary to obtain a field theory that is suitable for numerical computations: we derive a regularisation term which optimises the solvability of the discrete Euler--Lagrange equations. Secondly, we develop a method to find solutions to machine learned discrete field theories which constitute travelling waves of the underlying continuous PDE.

Citations (6)

Summary

We haven't generated a summary for this paper yet.