Topological holography for fermions (2404.19004v1)
Abstract: Topological holography is a conjectured correspondence between the symmetry charges and defects of a $D$-dimensional system with the anyons in a $(D+1)$-dimensional topological order: the symmetry topological field theory (SymTFT). Topological holography is conjectured to capture the topological aspects of symmetry in gapped and gapless systems, with different phases corresponding to different gapped boundaries (anyon condensations) of the SymTFT. This correspondence was previously considered primarily for bosonic systems, excluding many phases of condensed matter systems involving fermionic electrons. In this work, we extend the SymTFT framework to establish a topological holography correspondence for fermionic systems. We demonstrate that this fermionic SymTFT framework captures the known properties of $1+1D$ fermion gapped phases and critical points, including the classification, edge-modes, and stacking rules of fermionic symmetry-protected topological phases (SPTs), and computation of partition functions of fermionic conformal field theories (CFTs). Beyond merely reproducing known properties, we show that the SymTFT approach can additionally serve as a practical tool for discovering new physics, and use this framework to construct a new example of a fermionic intrinsically gapless SPT phase characterized by an emergent fermionic anomaly.
- L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, Journal of High Energy Physics 2018, 189 (2018), arXiv:1704.02330 [hep-th] .
- R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases, Journal of High Energy Physics 2024, 132 (2024), arXiv:1912.02817 [hep-th] .
- R. Luo, Q.-R. Wang, and Y.-N. Wang, Lecture notes on generalized symmetries and applications, Phys. Rept. 1065, 1 (2024), arXiv:2307.09215 [hep-th] .
- P. R. S. Gomes, An introduction to higher-form symmetries, SciPost Phys. Lect. Notes , 74 (2023), arXiv:2303.01817 [hep-th] .
- S.-H. Shao, What’s done cannot be undone: Tasi lectures on non-invertible symmetry (2023), arXiv:2308.00747 [hep-th] .
- A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023a), arXiv:2203.03596 [cond-mat.str-el] .
- W. Ji and X.-G. Wen, A unified view on symmetry, anomalous symmetry and non-invertible gravitational anomaly (2022), arXiv:2106.02069 [cond-mat.str-el] .
- A. Chatterjee and X.-G. Wen, Holographic theory for continuous phase transitions: Emergence and symmetry protection of gaplessness, Phys. Rev. B 108, 075105 (2023b), arXiv:2205.06244 [cond-mat.str-el] .
- H. Moradi, S. Faroogh Moosavian, and A. Tiwari, Topological Holography: Towards a Unification of Landau and Beyond-Landau Physics, SciPost Physics Core 6, 066 (2023), arXiv:2207.10712 [cond-mat.str-el] .
- D. S. Freed, G. W. Moore, and C. Teleman, Topological symmetry in quantum field theory (2023), arXiv:2209.07471 [hep-th] .
- K. Inamura and X.-G. Wen, 2+1d symmetry-topological-order from local symmetric operators in 1+1d (2023), arXiv:2310.05790 [cond-mat.str-el] .
- L. Bhardwaj and S. Schafer-Nameki, Generalized charges, part ii: Non-invertible symmetries and the symmetry tft (2023), arXiv:2305.17159 [hep-th] .
- J. Kaidi, K. Ohmori, and Y. Zheng, Symmetry TFTs for Non-invertible Defects, Communications in Mathematical Physics 404, 1021 (2023a), arXiv:2209.11062 [hep-th] .
- A. Chatterjee, W. Ji, and X.-G. Wen, Emergent generalized symmetry and maximal symmetry-topological-order (2023), arXiv:2212.14432 [cond-mat.str-el] .
- L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886, 436 (2014), arXiv:1307.8244 [cond-mat.str-el] .
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation in topological orders, Nuclear Physics B 922, 62 (2017), arXiv:1702.00673 [cond-mat.str-el] .
- C. Zhang and C. Córdova, Anomalies of (1+1)d11𝑑(1+1)d( 1 + 1 ) italic_d categorical symmetries (2023), arXiv:2304.01262 [cond-mat.str-el] .
- C. Cordova, D. García-Sepúlveda, and N. Holfester, Particle-soliton degeneracies from spontaneously broken non-invertible symmetry (2024), arXiv:2403.08883 [hep-th] .
- C. Cordova, P.-S. Hsin, and C. Zhang, Anomalies of non-invertible symmetries in (3+1)d (2023), arXiv:2308.11706 [hep-th] .
- R. Wen and A. C. Potter, Classification of 1+1d gapless symmetry protected phases via topological holography (2023), arXiv:2311.00050 [cond-mat.str-el] .
- T. D. Brennan and Z. Sun, A symtft for continuous symmetries (2024), arXiv:2401.06128 [hep-th] .
- F. Apruzzi, F. Bedogna, and N. Dondi, Symth for non-finite symmetries (2024), arXiv:2402.14813 [hep-th] .
- D. Gaiotto and J. Kulp, Orbifold groupoids, JHEP 02, 132, arXiv:2008.05960 [hep-th] .
- P. B. Smith and Y. Zheng, Backfiring bosonisation (2024), arXiv:2403.03953 [hep-th] .
- K. Ohmori, Categorical aspects of symmetry in fermionic systems (2024), https://pirsa.org/24030089.
- D. Aasen, E. Lake, and K. Walker, Fermion condensation and super pivotal categories, Journal of Mathematical Physics 60, 121901 (2019), arXiv:1709.01941 [cond-mat.str-el] .
- L. Kong and H. Zheng, Gapless edges of 2d topological orders and enriched monoidal categories, Nuclear Physics B 927, 140 (2018), arXiv:1705.01087 [cond-mat.str-el] .
- L. Kong and H. Zheng, A mathematical theory of gapless edges of 2d topological orders. Part I, Journal of High Energy Physics 2020, 150 (2020), arXiv:1905.04924 [cond-mat.str-el] .
- L. Kong and H. Zheng, A mathematical theory of gapless edges of 2d topological orders. Part II, Nucl. Phys. B 966, 115384 (2021), arXiv:1912.01760 [cond-mat.str-el] .
- T. Scaffidi, D. E. Parker, and R. Vasseur, Gapless Symmetry-Protected Topological Order, Physical Review X 7, 041048 (2017), arXiv:1705.01557 [cond-mat.str-el] .
- R. Thorngren, A. Vishwanath, and R. Verresen, Intrinsically gapless topological phases, Phys. Rev. B 104, 075132 (2021), arXiv:2008.06638 [cond-mat.str-el] .
- L. Li, M. Oshikawa, and Y. Zheng, Decorated defect construction of gapless-spt states (2023a), arXiv:2204.03131 [cond-mat.str-el] .
- R. Wen and A. C. Potter, Bulk-boundary correspondence for intrinsically gapless symmetry-protected topological phases from group cohomology, Phys. Rev. B 107, 245127 (2023), arXiv:2208.09001 [cond-mat.str-el] .
- L. Li, M. Oshikawa, and Y. Zheng, Intrinsically/purely gapless-spt from non-invertible duality transformations (2023b), arXiv:2307.04788 [cond-mat.str-el] .
- X.-J. Yu and W.-L. Li, Quantum phase transition between topologically distinct quantum critical points (2024), arXiv:2403.03716 [cond-mat.str-el] .
- L. Su and M. Zeng, Gapless symmetry protected topological phases and generalized deconfined critical points from gauging a finite subgroup (2024), arXiv:2401.11702 [cond-mat.str-el] .
- R. Flores-Calderón, E. J. König, and A. M. Cook, Topological quantum criticality from multiplicative topological phases (2023), arXiv:2311.17799 [cond-mat.str-el] .
- T. Ando, Gauging on the lattice and gapped/gapless topological phases (2024), arXiv:2402.03566 [cond-mat.str-el] .
- A. Davydov, Modular invariants for group-theoretical modular data. i (2009), arXiv:0908.1044 [math.QA] .
- A. Davydov and D. Simmons, On lagrangian algebras in group-theoretical braided fusion categories (2016), arXiv:1603.04650 [math.QA] .
- R. Wen, W. Ye, and A. C. Potter, On fermionic gapless spts To appear.
- A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131–136 (2001), arXiv:cond-mat/0010440 [cond-mat.mes-hall] .
- L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), arXiv:1008.4138 [cond-mat.str-el] .
- Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ𝜎\sigmaitalic_σ models and a special group supercohomology theory, Phys. Rev. B 90, 115141 (2014), arXiv:1201.2648 [cond-mat.str-el] .
- E. Tang and X.-G. Wen, Interacting One-Dimensional Fermionic Symmetry-Protected Topological Phases, Phys. Rev. Lett. 109, 096403 (2012), arXiv:1204.0520 [cond-mat.str-el] .
- A. Turzillo and M. You, Duality and stacking of bosonic and fermionic spt phases (2023), arXiv:2311.18782 [cond-mat.str-el] .
- R. Thorngren, Anomalies and bosonization (2019), arXiv:1810.04414 [cond-mat.str-el] .
- Q.-R. Wang and Z.-C. Gu, Towards a complete classification of fermionic symmetry protected topological phases in 3D and a general group supercohomology theory, arXiv e-prints , arXiv:1703.10937 (2017), arXiv:1703.10937 [cond-mat.str-el] .
- D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), arXiv:1409.5436 [cond-mat.str-el] .
- D. Bulmash and M. Barkeshli, Fermionic symmetry fractionalization in (2 +1 ) dimensions, Phys. Rev. B 105, 125114 (2022), arXiv:2109.10913 [cond-mat.str-el] .
- A. Kapustin, A. Turzillo, and M. You, Spin Topological Field Theory and Fermionic Matrix Product States, Phys. Rev. B 98, 125101 (2018), arXiv:1610.10075 [cond-mat.str-el] .
- Ö. M. Aksoy and C. Mudry, Elementary derivation of the stacking rules of invertible fermionic topological phases in one dimension, Phys. Rev. B 106, 035117 (2022), arXiv:2204.10333 [cond-mat.str-el] .
- K. Inamura, Fermionization of fusion category symmetries in 1+1 dimensions, JHEP 10, 101, arXiv:2206.13159 [cond-mat.str-el] .
- A. Karch, D. Tong, and C. Turner, A web of 2d dualities: Z_2 gauge fields and Arf invariants, SciPost Physics 7, 007 (2019), arXiv:1902.05550 [hep-th] .
- A. Debray, W. Ye, and M. Yu, Bosonization and anomaly indicators of (2+1)-d fermionic topological orders (2023), arXiv:2312.13341 [math-ph] .
- J. C. Baez and J. Dolan, Higher-dimensional algebra and topological quantum field theory, Journal of Mathematical Physics 36, 6073 (1995), arXiv:q-alg/9503002 [math.QA] .
- J. Lurie, On the classification of topological field theories (2009), arXiv:0905.0465 [math.CT] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.