Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The PRODSAT phase of random quantum satisfiability (2404.18447v1)

Published 29 Apr 2024 in cs.IT, cs.DS, math.IT, and quant-ph

Abstract: The $k$-QSAT problem is a quantum analog of the famous $k$-SAT constraint satisfaction problem. We must determine the zero energy ground states of a Hamiltonian of $N$ qubits consisting of a sum of $M$ random $k$-local rank-one projectors. It is known that product states of zero energy exist with high probability if and only if the underlying factor graph has a clause-covering dimer configuration. This means that the threshold of the PRODSAT phase is a purely geometric quantity equal to the dimer covering threshold. We revisit and fully prove this result through a combination of complex analysis and algebraic methods based on Buchberger's algorithm for complex polynomial equations with random coefficients. We also discuss numerical experiments investigating the presence of entanglement in the PRODSAT phase in the sense that product states do not span the whole zero energy ground state space.

Summary

We haven't generated a summary for this paper yet.