Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on the quantum satisfiability threshold (0907.1297v3)

Published 7 Jul 2009 in quant-ph, cond-mat.stat-mech, and cs.CC

Abstract: Quantum k-SAT is the problem of deciding whether there is a n-qubit state which is perpendicular to a set of vectors, each of which lies in the Hilbert space of k qubits. Equivalently, the problem is to decide whether a particular type of local Hamiltonian has a ground state with zero energy. We consider random quantum k-SAT formulas with n variables and m = \alpha n clauses, and ask at what value of \alpha these formulas cease to be satisfiable. We show that the threshold for random quantum 3-SAT is at most 3.594. For comparison, convincing arguments from statistical physics suggest that the classical 3-SAT threshold is \alpha \approx 4.267. For larger k, we show that the quantum threshold is a constant factor smaller than the classical one. Our bounds work by determining the generic rank of the satisfying subspace for certain gadgets, and then using the technique of differential equations to analyze various algorithms that partition the hypergraph into a collection of these gadgets. Our use of differential equation to establish upper bounds on a satisfiability threshold appears to be novel, and our techniques may apply to various classical problems as well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sergey Bravyi (71 papers)
  2. Cristopher Moore (84 papers)
  3. Alexander Russell (39 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.