Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On some algebraic and geometric aspects of the quantum unitary group (2404.17863v1)

Published 27 Apr 2024 in math.OA

Abstract: Consider the compact quantum group $U_q(2)$, where $q$ is a non-zero complex deformation parameter such that $|q|\neq 1$. Let $C(U_q(2))$ denote the underlying $C*$-algebra of the compact quantum group $U_q(2)$. We prove that if $q$ is a non-real complex number and $q\prime$ is real, then the underlying $C*$-algebras $C(U_q(2))$ and $C(U_{q\prime}(2))$ are non-isomorphic. This is in sharp contrast with the case of braided $SU_q(2)$, introduced earlier by Woronowicz et al., where $q$ is a non-zero complex deformation parameter. In another direction, on a geometric aspect of $U_q(2)$, we introduce torus action on the $C*$-algebra $C(U_q(2))$ and obtain a $C*$-dynamical system $(C(U_q(2)),\mathbb{T}3,\alpha)$. We construct a $\mathbb{T}3$-equivariant spectral triple for $U_q(2)$ that is even and $3+$-summable. It is shown that the Dirac operator is K-homologically nontrivial.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com