Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant spectral triple for the quantum group $U_q(2)$ for complex deformation parameters (2102.11473v2)

Published 23 Feb 2021 in math.OA and math.QA

Abstract: Let $q=|q|e{i\pi\theta},\,\theta\in(-1,1],$ be a nonzero complex number such that $|q|\neq 1$ and consider the compact quantum group $U_q(2)$. For $\theta\notin\mathbb{Q}\setminus{0,1}$, we obtain the $K$-theory of the $C*$-algebra $C(U_q(2))$. We construct a spectral triple on $U_q(2)$ which is equivariant under its own comultiplication action. The spectral triple obtained here is even, $4+$-summable, non-degenerate, and the Dirac operator acts on two copies of the $L2$-space of $U_q(2)$. The $K$-homology class of the associated Fredholm module is shown to be nontrivial.

Summary

We haven't generated a summary for this paper yet.