Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Against Dynamic: An Open-set Self-learning Framework (2404.17830v2)

Published 27 Apr 2024 in cs.LG and cs.CV

Abstract: In open-set recognition, existing methods generally learn statically fixed decision boundaries using known classes to reject unknown classes. Though they have achieved promising results, such decision boundaries are evidently insufficient for universal unknown classes in dynamic and open scenarios as they can potentially appear at any position in the feature space. Moreover, these methods just simply reject unknown class samples during testing without any effective utilization for them. In fact, such samples completely can constitute the true instantiated representation of the unknown classes to further enhance the model's performance. To address these issues, this paper proposes a novel dynamic against dynamic idea, i.e., dynamic method against dynamic changing open-set world, where an open-set self-learning (OSSL) framework is correspondingly developed. OSSL starts with a good closed-set classifier trained by known classes and utilizes available test samples for model adaptation during testing, thus gaining the adaptability to changing data distributions. In particular, a novel self-matching module is designed for OSSL, which can achieve the adaptation in automatically identifying known class samples while rejecting unknown class samples which are further utilized to enhance the discriminability of the model as the instantiated representation of unknown classes. Our method establishes new performance milestones respectively in almost all standard and cross-data benchmarks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com