Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Semi-Supervised Learning for Self-learning Open-World Classes (2401.07551v1)

Published 15 Jan 2024 in cs.LG

Abstract: Existing semi-supervised learning (SSL) methods assume that labeled and unlabeled data share the same class space. However, in real-world applications, unlabeled data always contain classes not present in the labeled set, which may cause classification performance degradation of known classes. Therefore, open-world SSL approaches are researched to handle the presence of multiple unknown classes in the unlabeled data, which aims to accurately classify known classes while fine-grained distinguishing different unknown classes. To address this challenge, in this paper, we propose an open-world SSL method for Self-learning Open-world Classes (SSOC), which can explicitly self-learn multiple unknown classes. Specifically, SSOC first defines class center tokens for both known and unknown classes and autonomously learns token representations according to all samples with the cross-attention mechanism. To effectively discover novel classes, SSOC further designs a pairwise similarity loss in addition to the entropy loss, which can wisely exploit the information available in unlabeled data from instances' predictions and relationships. Extensive experiments demonstrate that SSOC outperforms the state-of-the-art baselines on multiple popular classification benchmarks. Specifically, on the ImageNet-100 dataset with a novel ratio of 90%, SSOC achieves a remarkable 22% improvement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. K. Aggarwal, M. M. Mijwil, A.-H. Al-Mistarehi, S. Alomari, M. Gök, A. M. Z. Alaabdin, S. H. Abdulrhman et al., “Has the future started? the current growth of artificial intelligence, machine learning, and deep learning,” Iraqi Journal for Computer Science and Mathematics, vol. 3, pp. 115–123, 2022.
  2. Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama, E. Uchibe, and J. Morimoto, “Deep learning, reinforcement learning, and world models,” Neural Networks, vol. 152, pp. 267–275, 2022.
  3. S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. E. P. Reyes, M. Shyu, S. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms, techniques, and applications,” ACM Computing Surveys (CSUR), vol. 51, pp. 92:1–92:36, 2019.
  4. S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey of deep learning and its applications: a new paradigm to machine learning,” Archives of Computational Methods in Engineering, vol. 27, pp. 1071–1092, 2020.
  5. Y. Yang, Z. Fu, D. Zhan, Z. Liu, and Y. Jiang, “Semi-supervised multi-modal multi-instance multi-label deep network with optimal transport,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, pp. 696–709, 2021.
  6. Y. Yang, D. Zhou, D. Zhan, H. Xiong, Y. Jiang, and J. Yang, “Cost-effective incremental deep model: Matching model capacity with the least sampling,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, pp. 3575–3588, 2023.
  7. J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Machine learning, vol. 109, pp. 373–440, 2020.
  8. Y. Yang, D. Zhan, Y. Wu, Z. Liu, H. Xiong, and Y. Jiang, “Semi-supervised multi-modal clustering and classification with incomplete modalities,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, pp. 682–695, 2021.
  9. Y. Yang, H. Wei, H. Zhu, D. Yu, H. Xiong, and J. Yang, “Exploiting cross-modal prediction and relation consistency for semi-supervised image captioning,” IEEE Transactions on Cybernetics, 2021.
  10. M. Pezeshki, L. Fan, P. Brakel, A. C. Courville, and Y. Bengio, “Deconstructing the ladder network architecture,” in ICML, New York, NY, 2016, pp. 2368–2376.
  11. M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with stochastic transformations and perturbations for deep semi-supervised learning,” in NeurIPS, Barcelona, Spain, 2016, pp. 1163–1171.
  12. S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,” in ICLR, Toulon, France, 2017.
  13. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” in NeurIPS, Long Beach, CA, 2017, pp. 1195–1204.
  14. D. Zhou, Y. Yang, and D. Zhan, “Learning to classify with incremental new class,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 2429–2443, 2022.
  15. A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised learning with ladder networks,” in NeurIPS, Quebec, Canada, 2015, pp. 3546–3554.
  16. K. Cao, M. Brbic, and J. Leskovec, “Open-world semi-supervised learning,” in ICLR, Virtual Event, 2022.
  17. C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, pp. 3614–3631, 2020.
  18. W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, pp. 1757–1772, 2013.
  19. C. Troisemaine, V. Lemaire, S. Gosselin, A. Reiffers-Masson, J. Flocon-Cholet, and S. Vaton, “Novel class discovery: an introduction and key concepts,” arXiv preprint arXiv:2302.12028, 2023.
  20. P. Nodet, V. Lemaire, A. Bondu, A. Cornuéjols, and A. Ouorou, “From weakly supervised learning to biquality learning: an introduction,” in IJCNN, Shenzhen, China, 2021, pp. 1–10.
  21. Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National science review, vol. 5, pp. 44–53, 2018.
  22. L. Guo, Y. Zhang, Z. Wu, J. Shao, and Y. Li, “Robust semi-supervised learning when not all classes have labels,” in NeurIPS, New Orleans, LA, 2022, pp. 3305–3317.
  23. Y. Chen, X. Zhu, W. Li, and S. Gong, “Semi-supervised learning under class distribution mismatch,” in AAAI, New York, NY, 2020, pp. 3569–3576.
  24. D. Lee, S. Kim, I. Kim, Y. Cheon, M. Cho, and W. Han, “Contrastive regularization for semi-supervised learning,” in CVPR, New Orleans, LA, 2022, pp. 3910–3919.
  25. X. Yang, Z. Song, I. King, and Z. Xu, “A survey on deep semi-supervised learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, pp. 8934–8954, 2023.
  26. A. Oliver, A. Odena, C. Raffel, E. D. Cubuk, and I. J. Goodfellow, “Realistic evaluation of deep semi-supervised learning algorithms,” in NeurIPS, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., Montréal, Canada, 2018, pp. 3239–3250.
  27. D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot, A. Oliver, and C. Raffel, “Mixmatch: A holistic approach to semi-supervised learning,” in NeurIPS, BC, Canada, 2019, pp. 5050–5060.
  28. H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical risk minimization,” in ICLR, BC, Canada, 2018.
  29. K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. Raffel, E. D. Cubuk, A. Kurakin, and C. Li, “Fixmatch: Simplifying semi-supervised learning with consistency and confidence,” in NeurIPS, Virtual Event, 2020, pp. 596–608.
  30. L. Guo, Z. Zhang, Y. Jiang, Y. Li, and Z. Zhou, “Safe deep semi-supervised learning for unseen-class unlabeled data,” in ICML, Virtual Event, 2020, pp. 3897–3906.
  31. Y. Yang, H. Wei, Z. Sun, G. Li, Y. Zhou, H. Xiong, and J. Yang, “S2OSC: A holistic semi-supervised approach for open set classification,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 16, pp. 34:1–34:27, 2022.
  32. X. Sun, Z. Yang, C. Zhang, K. V. Ling, and G. Peng, “Conditional gaussian distribution learning for open set recognition,” in CVPR, Seattle, WA, 2020, pp. 13 477–13 486.
  33. Y. Yang, Z. Sun, H. Zhu, Y. Fu, Y. Zhou, H. Xiong, and J. Yang, “Learning adaptive embedding considering incremental class,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, pp. 2736–2749, 2023.
  34. K. Han, A. Vedaldi, and A. Zisserman, “Learning to discover novel visual categories via deep transfer clustering,” in ICCV, Seoul, Korea (South), 2019, pp. 8400–8408.
  35. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, Long Beach, CA, 2017, pp. 5998–6008.
  36. A. Jaegle, S. Borgeaud, J. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer, O. J. Hénaff, M. M. Botvinick, A. Zisserman, O. Vinyals, and J. Carreira, “Perceiver IO: A general architecture for structured inputs & outputs,” in ICLR, Virtual Event, 2022.
  37. M. Gheini, X. Ren, and J. May, “Cross-attention is all you need: Adapting pretrained transformers for machine translation,” in EMNLP, Punta Cana, Dominican Republic, 2021, pp. 1754–1765.
  38. Z. Zhong, E. Fini, S. Roy, Z. Luo, E. Ricci, and N. Sebe, “Neighborhood contrastive learning for novel class discovery,” in CVPR, Virtual Event, 2021, pp. 10 867–10 875.
  39. K. Han, S. Rebuffi, S. Ehrhardt, A. Vedaldi, and A. Zisserman, “Automatically discovering and learning new visual categories with ranking statistics,” in ICLR, Addis Ababa, Ethiopia, 2020.
  40. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html
  41. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol. 115, pp. 211–252, 2015.
  42. W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and L. Van Gool, “Scan: Learning to classify images without labels,” in ECCV, Glasgow, UK, 2020, pp. 268–285.
  43. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, pp. 83–97, 1955.
  44. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, Las Vegas, NV, 2016, pp. 770–778.
  45. B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable k-means++,” Proceedings of the VLDB Endowment, vol. 5, pp. 622–633, 2012.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenjuan Xi (3 papers)
  2. Xin Song (14 papers)
  3. Weili Guo (8 papers)
  4. Yang Yang (884 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.