Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Over-the-Air Modulation for RIS-assisted Symbiotic Radios: Design, Analysis, and Optimization (2404.17175v1)

Published 26 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: In reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR), an RIS is exploited to assist the primary system and to simultaneously operate as a secondary transmitter by modulating its own information over the incident primary signal from the air. Such an operation is called over-the-air modulation. The existing modulation schemes such as on-off keying and binary phase-shift keying suffer from two problems for joint detection of the primary and secondary signals in RIS-assisted SR, i.e., one is the detection ambiguity problem when the direct link is blocked, and the other is the bit error rate (BER) error-floor problem when the direct link is weak. To address the two problems, we propose a novel modulation scheme by dividing the phase-shift matrix into two parts: one is the assistance beamforming matrix for assisting the primary system and the other is the transmission beamforming matrix for delivering the secondary signal. To optimize the assistance and transmission beamforming matrices, we first introduce an assistance factor that describes the performance requirement of the primary system and then formulate a problem to minimize the BER of the secondary system, while guaranteeing the BER requirement of the primary system controlled by the assistance factor. To solve this non-convex problem, we resort to the successive convex approximation technique to obtain a suboptimal solution. Furthermore, to draw more insights, we propose a low-complexity assistance-transmission beamforming structure by borrowing the idea from the classical maximum ratio transmission and zero forcing techniques. Finally, simulation results reveal an interesting tradeoff between the BER performance of the primary and secondary systems by adjusting the assistance factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. H. Zhou and Y.-C. Liang, “RIS design for symbiotic radio: A mutualistic spectrum sharing perspective,” in Proc. IEEE Global Commun. Conf. (Globecom).   Kuala Lumpur, Malaysia: IEEE, 2023, pp. 116–121.
  2. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, and H. V. Poor, “6G Internet of Things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, 2021.
  3. S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.
  4. R. Long, Y.-C. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new communication paradigm for passive internet of things,” IEEE Internet Things J., vol. 7, no. 2, pp. 1350–1363, 2019.
  5. Y.-C. Liang, Q. Zhang, E. G. Larsson, and G. Y. Li, “Symbiotic radio: Cognitive backscattering communications for future wireless networks,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1242–1255, 2020.
  6. J. Wang, Y.-C. Liang, and S. Sun, “Multi-user multi-IoT-device symbiotic radio: A novel massive access scheme for cellular IoT,” IEEE Trans. Wireless Commun., 2024, early access, 10.1109/TWC.2024.3385530.
  7. Z. Dai, R. Li, J. Xu, Y. Zeng, and S. Jin, “Rate-region characterization and channel estimation for cell-free symbiotic radio communications,” IEEE Trans. Commun., vol. 71, no. 2, pp. 674–687, 2022.
  8. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Maga., vol. 58, no. 1, pp. 106–112, 2019.
  9. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, 2019.
  10. Y.-C. Liang, R. Long, Q. Zhang, J. Chen, H. V. Cheng, and H. Guo, “Large intelligent surface/antennas (LISA): Making reflective radios smart,” J. Commun. Info. Netw., vol. 4, no. 2, pp. 40–50, 2019.
  11. X. Lei, M. Wu, F. Zhou, X. Tang, R. Q. Hu, and P. Fan, “Reconfigurable intelligent surface-based symbiotic radio for 6G: Design, challenges, and opportunities,” IEEE Wireless Commun., vol. 28, no. 5, pp. 210–216, 2021.
  12. Y.-C. Liang, Q. Zhang, J. Wang, R. Long, H. Zhou, and G. Yang, “Backscatter communication assisted by reconfigurable intelligent surfaces,” Proc. IEEE, vol. 110, no. 9, pp. 1339–1357, 2022.
  13. Q. Zhang, H. Zhou, Y.-C. Liang, W. Zhang, and H. V. Poor, “Channel capacity of RIS-assisted symbiotic radios with imperfect knowledge of channels,” IEEE Trans. Cogn. Commun. Netw., 2024, early access, 10.1109/TCCN.2024.3379406.
  14. H. Chen, R. Long, and Y.-C. Liang, “Transmission protocol and beamforming design for RIS-assisted symbiotic radio over OFDM carriers,” in Proc. IEEE Global Commun. Conf. (Globecom).   Kuala Lumpur, Malaysia: IEEE, 2023, pp. 3258–3263.
  15. W. Yan, X. Yuan, Z.-Q. He, and X. Kuai, “Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1793–1808, 2020.
  16. M. Hua, Q. Wu, L. Yang, R. Schober, and H. V. Poor, “A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems,” IEEE Trans. Signal Process., vol. 70, pp. 550–565, 2021.
  17. M. Hua, L. Yang, Q. Wu, C. Pan, C. Li, and A. L. Swindlehurst, “UAV-assisted intelligent reflecting surface symbiotic radio system,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5769–5785, 2021.
  18. Q. Zhang, Y.-C. Liang, and H. V. Poor, “Reconfigurable intelligent surface assisted MIMO symbiotic radio networks,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4832–4846, 2021.
  19. H. Zhou, X. Kang, Y.-C. Liang, S. Sun, and X. Shen, “Cooperative beamforming for reconfigurable intelligent surface-assisted symbiotic radios,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 11 677–11 692, 2022.
  20. S. Guo, S. Lv, H. Zhang, J. Ye, and P. Zhang, “Reflecting modulation,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2548–2561, 2020.
  21. M. Wu, X. Lei, X. Zhou, Y. Xiao, X. Tang, and R. Q. Hu, “Reconfigurable intelligent surface assisted spatial modulation for symbiotic radio,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 12 918–12 931, 2021.
  22. Q. Li, S. Bai, J. Li, Z. Hu, and J. Wang, “RIS-assisted joint active and passive transmission with distributed reception,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6805–6809, 2023.
  23. S. Lin, B. Zheng, G. C. Alexandropoulos, M. Wen, M. Di Renzo, and F. Chen, “Reconfigurable intelligent surfaces with reflection pattern modulation: Beamforming design and performance analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 741–754, 2020.
  24. S. Lin, F. Chen, M. Wen, Y. Feng, and M. Di Renzo, “Reconfigurable intelligent surface-aided quadrature reflection modulation for simultaneous passive beamforming and information transfer,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1469–1481, 2021.
  25. Q. Li, M. Wen, L. Xu, and K. Li, “Reconfigurable intelligent surface-aided number modulation for symbiotic active/passive transmission,” IEEE Internet Things J., vol. 10, no. 22, pp. 19 356–19 367, 2023.
  26. C. Wang, Z. Li, T.-X. Zheng, D. W. K. Ng, and N. Al-Dhahir, “Intelligent reflecting surface-aided secure broadcasting in millimeter wave symbiotic radio networks,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11 050–11 055, 2021.
  27. J. Hu, Y.-C. Liang, and Y. Pei, “Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2359–2371, 2020.
  28. M. Wu, X. Lei, X. Zhou, X. Tang, and O. A. Dobre, “RIS-assisted energy-and spectrum-efficient symbiotic transmission in NOMA systems,” IEEE Trans. Commun., vol. 70, no. 12, pp. 12 918–12 931, 2021.
  29. J. Ye, S. Guo, and M.-S. Alouini, “Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5561–5574, 2020.
  30. T. K. Lo, “Maximum ratio transmission,” in IEEE Int. Conf. Commun. (Cat. No. 99CH36311), vol. 2.   IEEE, 1999, pp. 1310–1314.
  31. S. Song, M. O. Hasna, and K. B. Letaief, “Prior zero forcing for cognitive relaying,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 938–947, 2013.
  32. H. Zhou, B. Cai, Q. Zhang, R. Long, Y. Pei, and Y.-C. Liang, “Modulation design and optimization for RIS-assisted symbiotic radios,” arXiv preprint arXiv:2311.01167, 2023.
  33. H. Zhou, Q. Zhang, Y.-C. Liang, and Y. Pei, “Assistance-transmission tradeoff for RIS-assisted symbiotic radios,” IEEE Trans. Wireless Commun., 2023, early access, doi:10.1109/TWC.2023.3335111.
  34. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, 2019.
  35. J. Zuo, Y. Liu, Z. Ding, L. Song, and H. V. Poor, “Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 611–626, 2022.
  36. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.2,,” Jan. 2020. [Online]. Available: http:// cvxr.com/cvx.
  37. J. Zhang, Y. Huang, J. Wang, B. Ottersten, and L. Yang, “Per-antenna constant envelope precoding and antenna subset selection: A geometric approach,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6089–6104, 2016.
  38. T. Jiang and W. Yu, “Interference nulling using reconfigurable intelligent surface,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1392–1406, 2022.

Summary

We haven't generated a summary for this paper yet.