Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulation Design and Optimization for RIS-Assisted Symbiotic Radios (2311.01167v2)

Published 2 Nov 2023 in cs.IT, eess.SP, and math.IT

Abstract: In reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR), the RIS acts as a secondary transmitter by modulating its information bits over the incident primary signal and simultaneously assists the primary transmission, then a cooperative receiver is used to jointly decode the primary and secondary signals. Most existing works of SR focus on using RIS to enhance the reflecting link while ignoring the ambiguity problem for the joint detection caused by the multiplication relationship of the primary and secondary signals. Particularly, in case of a blocked direct link, joint detection will suffer from severe performance loss due to the ambiguity, when using the conventional on-off keying and binary phase shift keying modulation schemes for RIS. To address this issue, we propose a novel modulation scheme for RIS-assisted SR that divides the phase-shift matrix into two components: the symbol-invariant and symbol-varying components, which are used to assist the primary transmission and carry the secondary signal, respectively. To design these two components, we focus on the detection of the composite signal formed by the primary and secondary signals, through which a problem of minimizing the bit error rate (BER) of the composite signal is formulated to improve both the BER performance of the primary and secondary ones. By solving the problem, we derive the closed-form solution of the optimal symbol-invariant and symbol-varying components, which is related to the channel strength ratio of the direct link to the reflecting link. Moreover, theoretical BER performance is analyzed. Finally, simulation results show the superiority of the proposed modulation scheme over its conventional counterpart.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. H. Zhou, Q. Zhang, R. Long, and Y.-C. Liang, “Modulation design and optimization for multiplicative multiple access channel in symbiotic radios,” in Proc. IEEE Global Commun. Conf. (Globecom), Rio de Janeiro, Brazil, 2022.
  2. “The next hyper-connected experience for all,” Samsung 6G White paper. [Online]. Available: https://research.samsung.com/next-generation-communications
  3. X. You et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, pp. 1–74, 2021.
  4. M. Latva-aho, K. Leppänen, F. Clazzer, and A. Munari, “Key drivers and research challenges for 6G ubiquitous wireless intelligence,” 6G Flagship, Uni. Oulu, Oulu, Finland, Tech. Rep., 2020.
  5. R. Long, Y.-C. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new communication paradigm for passive internet of things,” IEEE Internet Things J., vol. 7, no. 2, pp. 1350–1363, 2019.
  6. Y.-C. Liang, Q. Zhang, E. G. Larsson, and G. Y. Li, “Symbiotic radio: Cognitive backscattering communications for future wireless networks,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1242–1255, 2020.
  7. S. J. Nawaz, S. K. Sharma, B. Mansoor, M. N. Patwary, and N. M. Khan, “Non-coherent and backscatter communications: Enabling ultra-massive connectivity in 6G wireless networks,” IEEE Access, vol. 9, pp. 38 144–38 186, 2021.
  8. M. B. Janjua and H. Arslan, “A survey of symbiotic radio: Methodologies, applications, and future directions,” Sensors, vol. 23, no. 5, p. 2511, 2023.
  9. J. D. Griffin and G. D. Durgin, “Gains for RF tags using multiple antennas,” IEEE Tran. Antennas Propag., vol. 56, no. 2, pp. 563–570, 2008.
  10. C. Boyer and S. Roy, “Backscatter communication and RFID: Coding, energy, and MIMO analysis,” IEEE Trans. Commun., vol. 64, no. 3, pp. 770–785, 2013.
  11. J. Kimionis, A. Bletsas, and J. N. Sahalos, “Increased range bistatic scatter radio,” IEEE Trans. Commun., vol. 62, no. 3, pp. 1091–1104, 2014.
  12. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient backscatter: Wireless communication out of thin air,” vol. 43, no. 4, Hong Kong, China, 2013, pp. 39–50.
  13. N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient backscatter communications: A contemporary survey,” IEEE Commun. Surveys & Tuts., vol. 20, no. 4, pp. 2889–2922, 2018.
  14. J. Wang, Y.-C. Liang, and S. Sun, “Multi-user multi-IoT-device symbiotic radio: A novel massive access scheme for cellular IoT,” IEEE Trans. Wireless Commun., 2024, early access, 10.1109/TWC.2024.3385530.
  15. Q. Zhang, Y.-C. Liang, H.-C. Yang, and H. V. Poor, “Mutualistic mechanism in symbiotic radios: When can the primary and secondary transmissions be mutually beneficial?” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8036–8050, 2022.
  16. Z. Dai, R. Li, J. Xu, Y. Zeng, and S. Jin, “Rate-region characterization and channel estimation for cell-free symbiotic radio communications,” IEEE Trans. Commun., vol. 71, no. 2, pp. 674–687, 2022.
  17. J. Xu, Z. Dai, and Y. Zeng, “MIMO symbiotic radio with massive backscatter devices: Asymptotic analysis and precoding optimization,” IEEE Tran. Commun., vol. 71, no. 9, pp. 5487–5502, 2023.
  18. X. Chen, H. V. Cheng, K. Shen, A. Liu, and M.-J. Zhao, “Stochastic transceiver optimization in multi-tags symbiotic radio systems,” IEEE Internet Things J., vol. 7, no. 9, pp. 9144–9157, 2020.
  19. Z. Chu, W. Hao, P. Xiao, M. Khalily, and R. Tafazolli, “Resource allocations for symbiotic radio with finite blocklength backscatter link,” IEEE Internet Things J., vol. 7, no. 9, pp. 8192–8207, 2020.
  20. J. Kimionis, A. Bletsas, and J. N. Sahalos, “Bistatic backscatter radio for tag read-range extension,” in IEEE Int. Conf. RFID-Technol. Appl. (RFID-TA).   IEEE, 2012, pp. 356–361.
  21. G. Wang, F. Gao, R. Fan, and C. Tellambura, “Ambient backscatter communication systems: Detection and performance analysis,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4836–4846, 2016.
  22. D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “BackFi: High throughput WiFi backscatter,” in Proc. ACM SIGCOMM, vol. 45, no. 4, London, U.K., 2015, pp. 283–296.
  23. D. Darsena, G. Gelli, and F. Verde, “Modeling and performance analysis of wireless networks with ambient backscatter devices,” IEEE Trans. Commun., vol. 65, no. 4, pp. 1797–1814, 2017.
  24. J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable low-power backscatter networks,” ACM SIGCOMM Computer Commun. Review, vol. 42, no. 4, pp. 61–72, 2012.
  25. J. Kimionis, A. Bletsas, and J. N. Sahalos, “Bistatic backscatter radio for power-limited sensor networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM).   Atlanta, Georgia, USA: IEEE, 2013, pp. 353–358.
  26. N. Fasarakis-Hilliard, P. N. Alevizos, and A. Bletsas, “Coherent detection and channel coding for bistatic scatter radio sensor networking,” IEEE Trans. Commun., vol. 63, no. 5, pp. 1798–1810, 2015.
  27. A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota, “FM backscatter: Enabling connected cities and smart fabrics.” in Proc. Symp. Netw. Sys. Design Imp. (NSDI), vol. 17, no. 10.5555, 2017, pp. 3 154 630–3 154 650.
  28. G. Vougioukas, P. N. Alevizos, and A. Bletsas, “Coherent detector for pseudo-FSK backscatter under ambient constant envelope illumination,” in Proc. IEEE SPAWC.   IEEE, 2018, pp. 1–5.
  29. S. Thomas and M. S. Reynolds, “QAM backscatter for passive UHF RFID tags,” in IEEE Int. Conf. RFID.   IEEE, 2010, pp. 210–214.
  30. S. J. Thomas, E. Wheeler, J. Teizer, and M. S. Reynolds, “Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems,” IEEE Trans. Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 1175–1182, 2012.
  31. W. Liu, Y.-C. Liang, Y. Li, and B. Vucetic, “Backscatter multiplicative multiple-access systems: Fundamental limits and practical design,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 5713–5728, 2018.
  32. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Maga., vol. 58, no. 1, pp. 106–112, 2019.
  33. X. Lei, M. Wu, F. Zhou, X. Tang, R. Q. Hu, and P. Fan, “Reconfigurable intelligent surface-based symbiotic radio for 6G: Design, challenges, and opportunities,” IEEE Wireless Commun., vol. 28, no. 5, pp. 210–216, 2021.
  34. Y.-C. Liang, Q. Zhang, J. Wang, R. Long, H. Zhou, and G. Yang, “Backscatter communication assisted by reconfigurable intelligent surfaces,” Proc. IEEE, vol. 110, no. 9, pp. 1339–1357, 2022.
  35. Q. Zhang, H. Zhou, Y.-C. Liang, W. Zhang, and H. V. Poor, “Channel capacity of RIS-assisted symbiotic radios with imperfect knowledge of channels,” IEEE Trans. Cogn. Commun. Netw., 2024, early access, 10.1109/TCCN.2024.3379406.
  36. H. Zhou, Q. Zhang, Y.-C. Liang, and Y. Pei, “Assistance-transmission tradeoff for RIS-assisted symbiotic radios,” IEEE Trans. Wireless Commun., 2023, early access, doi:10.1109/TWC.2023.3335111.
  37. Q. Zhang, Y.-C. Liang, and H. V. Poor, “Reconfigurable intelligent surface assisted MIMO symbiotic radio networks,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4832–4846, 2021.
  38. H. Zhou, X. Kang, Y.-C. Liang, S. Sun, and X. Shen, “Cooperative beamforming for reconfigurable intelligent surface-assisted symbiotic radios,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 11 677–11 692, 2022.
  39. C. Zhang, H. Zhou, and Y.-C. Liang, “Interference-free MU-MISO symbiotic radios via RIS partitioning design,” in Proc. IEEE Global Commun. Conf. (Globecom).   Kuala Lumpur, Malaysia: IEEE, 2023, pp. 3264–3269.
  40. C. Wang, Z. Li, T.-X. Zheng, D. W. K. Ng, and N. Al-Dhahir, “Intelligent reflecting surface-aided secure broadcasting in millimeter wave symbiotic radio networks,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11 050–11 055, 2021.
  41. J. Hu, Y.-C. Liang, and Y. Pei, “Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2359–2371, 2020.
  42. M. Hua, Q. Wu, L. Yang, R. Schober, and H. V. Poor, “A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems,” IEEE Trans. Signal Process., vol. 70, pp. 550–565, 2022.
  43. M. Hua, L. Yang, Q. Wu, C. Pan, C. Li, and A. L. Swindlehurst, “UAV-assisted intelligent reflecting surface symbiotic radio system,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5769–5785, 2021.
  44. S. Lin, F. Chen, M. Wen, Y. Feng, and M. Di Renzo, “Reconfigurable intelligent surface-aided quadrature reflection modulation for simultaneous passive beamforming and information transfer,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1469–1481, 2021.
  45. S. Guo, S. Lv, H. Zhang, J. Ye, and P. Zhang, “Reflecting modulation,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2548–2561, 2020.
  46. M. Wu, X. Lei, X. Zhou, Y. Xiao, X. Tang, and R. Q. Hu, “Reconfigurable intelligent surface assisted spatial modulation for symbiotic radio,” IEEE Trans. Veh. Technol., vol. 70, pp. 12 918–12 931, 2021.
  47. Q. Li, M. Wen, L. Xu, and K. Li, “Reconfigurable intelligent surface-aided number modulation for symbiotic active/passive transmission,” IEEE Internet Things J., vol. 10, no. 22, pp. 19 356–19 367, 2022.
  48. W. Yan, X. Yuan, Z.-Q. He, and X. Kuai, “Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1793–1808, 2020.
  49. P. N. Alevizos, G. Vougioukas, and A. Bletsas, “Batteryless backscatter sensor networks—part i: Challenges with (really) simple tags,” IEEE Commun. Lett., vol. 27, no. 3, pp. 763–767, 2023.
  50. J. D. Griffin and G. D. Durgin, “Complete link budgets for backscatter-radio and RFID systems,” IEEE Antennas Propag. Mag., vol. 51, no. 2, pp. 11–25, 2009.
  51. A. L. Swindlehurst, G. Zhou, R. Liu, C. Pan, and M. Li, “Channel estimation with reconfigurable intelligent surfaces—a general framework,” Proc. IEEE, vol. 110, no. 9, pp. 1312–1338, 2022.
  52. X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “Ris-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, 2021.
  53. S. Ren, K. Shen, Y. Zhang, X. Li, X. Chen, and Z.-Q. Luo, “Configuring intelligent reflecting surface with performance guarantees: Blind beamforming,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3355–3370, 2022.
  54. J. Kimionis and M. M. Tentzeris, “Pulse shaping: The missing piece of backscatter radio and RFID,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4774–4788, 2016.
  55. B. Zheng, C. You, W. Mei, and R. Zhang, “A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications,” IEEE Commun. Surv. Tutor., vol. 24, no. 2, pp. 1035–1071, 2022.
  56. E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 830–834, 2020.
  57. J. Ge, Y.-C. Liang, S. Li, and Z. Bai, “RIS-enhanced spectrum sensing: How many reflecting elements are required to achieve a detection probability close to 1?” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8600–8615, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com