Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Hybrid Radiation Hydrodynamics scheme with gravity tree-based adaptive optimization algorithm (2404.17084v1)

Published 25 Apr 2024 in astro-ph.IM

Abstract: Modelling the interaction between ionizing photons emitted from massive stars and their environment is essential to further our understanding of galactic ecosystems. We present a hybrid Radiation-Hydrodynamics (RHD) scheme that couples an SPH code to a grid-based Monte Carlo Radiative Transfer code. The coupling is achieved by using the particle positions as generating sites for a Voronoi grid, and applying a precise mapping of particle-interpolated densities onto the grid cells that ensures mass conservation. The mapping, however, can be computationally infeasible for large numbers of particles. We introduce our tree-based algorithm for optimizing coupled RHD codes. Astrophysical SPH codes typically utilize tree-building procedures to sort particles into hierarchical groups (referred to as nodes) for evaluating self-gravity. Our algorithm adaptively walks the gravity tree and transforms the extracted nodes into pseudo-SPH particles, which we use for the grid construction and mapping. This method allows for the temporary reduction of fluid resolution in regions that are less affected by the radiation. A neighbour-finding scheme is implemented to aid our smoothing length solver for nodes. We show that the use of pseudo-particles produces equally accurate results that agree with benchmarks, and achieves a speed-up that scales with the reduction in the final number of particle-cell pairs being mapped.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. O. Kessel-Deynet and A. Burkert, “Ionizing radiation in smoothed particle hydrodynamics,” MNRAS, vol. 315, pp. 713–721, 2000.
  2. J. E. Dale, B. Ercolano, and C. J. Clarke, “A new algorithm for modelling photoionizing radiation in smoothed particle hydrodynamics,” MNRAS, vol. 382, pp. 1759–1767, 2007c.
  3. K. Wood, J. S. Mathis, and B. Ercolano, “A three-dimensional monte carlo photoionization code for modelling diffuse ionized gas,” MNRAS, vol. 348, pp. 1337–1347, 2004.
  4. T. J. Harries, “An algorithm for Monte Carlo time-dependent radiation transfer,” MNRAS, vol. 416, pp. 1500–1508, 2011.
  5. M. A. Petkova, B. Vandenbroucke, I. A. Bonnell, and J. M. D. Kruijssen, “Modelling of ionizing feedback with smoothed particle hydrodynamics and Monte Carlo radiative transfer on a Voronoi grid,” MNRAS, vol. 507, pp. 858–878, 2021.
  6. M. A. Petkova, G. Laibe, and I. A. Bonnell, “Fast and accurate Voronoi density gridding from lagrangian hydrodynamics data,” J.Comp.Phys., vol. 353, pp. 300–315, 2018.
  7. D. J. Price, J. Wurster, T. S. Tricco, C. Nixon, S. Toupin, A. Pettitt, C. Chan, D. Mentiplay, G. Laibe, S. Glover, C. Dobbs, R. Nealon, D. Liptai, H. Worpel, C. Bonnerot, G. Dipierro, G. Ballabio, E. Ragusa, C. Federrath, R. Iaconi, T. Reichardt, D. Forgan, M. Hutchison, T. Constantino, B. Ayliffe, K. Hirsh, and G. Lodato, “Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics,” PASA, vol. 35, p. e031, 2018.
  8. B. Vandenbroucke and K. Wood, “The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMacIonize,” Astron. Comput., vol. 23, pp. 40–59, 2018.
  9. S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information Theory, vol. 28, pp. 129–137, 1982.
  10. M. A. Petkova, “Cloudy with a chance of starlight : coupling of smoothed particle hydrodynamics and monte carlo radiative transfer for the study of ionising stellar feedback,” Ph.D. dissertation, University of St. Andrews, 2018.
  11. J. Barnes and P. Hut, “A hierarchical O⁢(N⁢log⁡N)𝑂𝑁𝑁{O}({N}\log{N})italic_O ( italic_N roman_log italic_N ) force-calculation algorithm,” Nature, vol. 324, no. 6096, pp. 446–449, 1986.
  12. W. Benz, R. L. Bowers, A. G. W. Cameron, and W. H. Press, “Dynamic mass exchange in doubly degenerate binaries. I. 0.9 and 1.2 M⊙subscript𝑀direct-product{M}_{\odot}italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT stars,” ApJ, vol. 348, p. 647, 1990.
  13. E. Gafton and S. Rosswog, “A fast recursive coordinate bisection tree for neighbour search and gravity,” MNRAS, vol. 418, pp. 770–781, 2011.
  14. T. G. Bisbas, R. Wünsch, A. P. Whitworth, D. A. Hubber, and S. Walch, “Radiation-driven implosion and triggered star formation,” ApJ, vol. 736, p. 142, 2011.
  15. B. Strömgren, “The physical state of interstellar hydrogen,” ApJ, vol. 89, p. 526, 1939.
  16. T. Hosokawa and S.-i. Inutsuka, “Dynamical expansion of ionization and dissociation front around a massive star. II. on the generality of triggered star formation,” ApJ, vol. 646, p. 240, 2006.
  17. T. G. Bisbas, T. J. Haworth, R. J. R. Williams, J. Mackey, P. Tremblin, A. C. Raga, S. J. Arthur, C. Baczynski, J. E. Dale, T. Frostholm, S. Geen, T. Haugbølle, D. Hubber, I. T. Iliev, R. Kuiper, J. Rosdahl, D. Sullivan, S. Walch, and R. Wünsch, “starbench: the D-type expansion of an HII region,” MNRAS, vol. 453, pp. 1324–1343, 2015.
  18. M. R. Bate, I. A. Bonnell, and N. M. Price, “Modelling accretion in protobinary systems,” MNRAS, vol. 277, pp. 362–376, 1995.
  19. D. J. Price, “Splash: An interactive visualisation tool for smoothed particle hydrodynamics simulations,” Publ. Astron. Soc. Aust., vol. 24, pp. 159–173, 2007.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube