Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High-Redshift Extragalactic Science with the Single Aperture Large Telescope for Universe Studies (SALTUS) Space Observatory (2404.16983v1)

Published 25 Apr 2024 in astro-ph.IM

Abstract: This paper presents an overview of the high-redshift extragalactic science case for the Single Aperture Large Telescope for Universe Studies (SALTUS) far-infrared NASA probe-class mission concept. Enabled by its 14m primary reflector, SALTUS offers enormous gains in spatial resolution and spectral sensitivity over previous far-IR missions. SALTUS would be a versatile observatory capable of responding to the scientific needs of the extragalactic community in the 2030s, and a natural follow-on to the near- and mid-IR capabilities of JWST. Key early-universe science goals for SALTUS focus on understanding the role of galactic feedback processes in regulating galaxy growth across cosmic time, and charting the rise of metals and dust from the early universe to the present. This paper summarizes these science cases and the performance metrics most relevant for high-redshift observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. P. R. Roelfsema, H. Shibai, L. Armus, et al., “SPICA-A Large Cryogenic Infrared Space Telescope: Unveiling the Obscured Universe,” PASA 35, e030 (2018).
  2. M. Meixner, A. Cooray, D. Leisawitz, et al., “Origins Space Telescope Mission Concept Study Report,” arXiv e-prints , arXiv:1912.06213 (2019).
  3. J. E. Chiar and A. G. G. M. Tielens, “Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium,” ApJ 637, 774–785 (2006).
  4. S. Wang and X. Chen, “The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys,” ApJ 877, 116 (2019).
  5. M. Pereira-Santaella, D. Rigopoulou, D. Farrah, et al., “Far-infrared metallicity diagnostics: application to local ultraluminous infrared galaxies,” MNRAS 470, 1218–1232 (2017).
  6. B. Peng, C. Lamarche, G. J. Stacey, et al., “Far-Infrared Line Diagnostics: Improving N/O Abundance Estimates for Dusty Galaxies,” ApJ 908, 166 (2021).
  7. L. Spinoglio, J. A. Fernández-Ontiveros, M. A. Malkan, et al., “SOFIA Observations of Far-IR Fine-structure Lines in Galaxies to Measure Metallicity,” ApJ 926, 55 (2022).
  8. Y. Chen, T. Jones, R. Sanders, et al., “Accurate oxygen abundance of interstellar gas in Mrk 71 from optical and infrared spectra,” Nature Astronomy 7, 771–778 (2023).
  9. N. Chartab, A. Cooray, J. Ma, et al., “Low gas-phase metallicities of ultraluminous infrared galaxies are a result of dust obscuration,” Nature Astronomy 6, 844–849 (2022).
  10. E. González-Alfonso, J. Fischer, J. Graciá-Carpio, et al., “The Mrk 231 molecular outflow as seen in OH,” A&A 561, A27 (2014).
  11. J. S. Spilker, K. A. Phadke, M. Aravena, et al., “Ubiquitous Molecular Outflows in z ¿ 4 Massive, Dusty Galaxies. I. Sample Overview and Clumpy Structure in Molecular Outflows on 500 pc Scales,” ApJ 905, 85 (2020).
  12. R. Herrera-Camus, N. Förster Schreiber, R. Genzel, et al., “Kiloparsec view of a typical star-forming galaxy when the Universe was ∼similar-to\sim∼1 Gyr old. I. Properties of outflow, halo, and interstellar medium,” A&A 649, A31 (2021).
  13. A. Smercina, J. D. T. Smith, D. A. Dale, et al., “After the Fall: The Dust and Gas in E+A Post-starburst Galaxies,” ApJ 855, 51 (2018).
  14. B. T. Draine, A. Li, B. S. Hensley, et al., “Excitation of Polycyclic Aromatic Hydrocarbon Emission: Dependence on Size Distribution, Ionization, and Starlight Spectrum and Intensity,” ApJ 917, 3 (2021).
  15. H. Dole, G. H. Rieke, G. Lagache, et al., “Confusion of Extragalactic Sources in the Mid- and Far-Infrared: Spitzer and Beyond,” ApJS 154, 93–96 (2004).
  16. I. G. Roseboom, S. J. Oliver, M. Kunz, et al., “The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images,” MNRAS 409, 48–65 (2010).
  17. P. D. Hurley, S. Oliver, M. Betancourt, et al., “HELP: XID+, the probabilistic de-blender for Herschel SPIRE maps,” MNRAS 464, 885–896 (2017).
  18. D. Liu, E. Daddi, M. Dickinson, et al., ““Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6,” ApJ 853, 172 (2018).
  19. P. Madau and M. Dickinson, “Cosmic Star-Formation History,” ARA&A 52, 415–486 (2014).
  20. J. A. Zavala, C. M. Casey, S. M. Manning, et al., “The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years,” ApJ 909, 165 (2021).
  21. A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. Basic model.,” ApJ 291, 722–746 (1985).
  22. J. Bauschlicher, Charles W., “The Reaction of Polycyclic Aromatic Hydrocarbon Cations with Hydrogen Atoms: The Astrophysical Implications,” ApJ 509, L125–L127 (1998).
  23. N. Foley, S. Cazaux, D. Egorov, et al., “Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions,” MNRAS 479, 649–656 (2018).
  24. M. W. Regan, M. D. Thornley, S. N. Vogel, et al., “The Radial Distribution of the Interstellar Medium in Disk Galaxies: Evidence for Secular Evolution,” ApJ 652, 1112–1121 (2006).
  25. A. Pope, J. Wagg, D. Frayer, et al., “Probing the Interstellar Medium of z ~1 Ultraluminous Infrared Galaxies through Interferometric Observations of CO and Spitzer Mid-infrared Spectroscopy,” ApJ 772, 92 (2013).
  26. I. Cortzen, J. Garrett, G. Magdis, et al., “PAHs as tracers of the molecular gas in star-forming galaxies,” MNRAS 482, 1618–1633 (2019).
  27. J. S. Spilker, K. A. Phadke, M. Aravena, et al., “Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy,” Nature 618, 708–711 (2023).
  28. J. Witstok, I. Shivaei, R. Smit, et al., “Carbonaceous dust grains seen in the first billion years of cosmic time,” Nature 621, 267–270 (2023).
  29. V. Markov, S. Gallerani, A. Ferrara, et al., “Dust attenuation evolution in z∼2similar-to𝑧2z\sim 2italic_z ∼ 2-12121212 JWST galaxies,” arXiv e-prints , arXiv:2402.05996 (2024).
  30. M. J. Michałowski, “Dust production 680-850 million years after the Big Bang,” A&A 577, A80 (2015).
  31. R. M. Lau, M. J. Hankins, Y. Han, et al., “Nested dust shells around the Wolf-Rayet binary WR 140 observed with JWST,” Nature Astronomy 6, 1308–1316 (2022).
  32. M. Shahbandeh, C. Ashall, P. Hoeflich, et al., “JWST NIRSpec+MIRI Observations of the nearby Type IIP supernova 2022acko,” arXiv e-prints , arXiv:2401.14474 (2024).
  33. A. Li and B. T. Draine, “Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium,” ApJ 554, 778–802 (2001).
  34. A. Maragkoudakis, E. Peeters, and A. Ricca, “Probing the size and charge of polycyclic aromatic hydrocarbons,” MNRAS 494, 642–664 (2020).
  35. O. V. Egorov, K. Kreckel, K. M. Sandstrom, et al., “PHANGS-JWST First Results: Destruction of the PAH Molecules in H II Regions Probed by JWST and MUSE,” ApJ 944, L16 (2023).
  36. J. McKinney, L. Armus, A. Pope, et al., “Regulating Star Formation in Nearby Dusty Galaxies: Low Photoelectric Efficiencies in the Most Compact Systems,” ApJ 908, 238 (2021).
  37. M. J. Kaufman, M. G. Wolfire, and D. J. Hollenbach, “[Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions,” ApJ 644, 283–299 (2006).
  38. P. F. Hopkins, L. Hernquist, T. J. Cox, et al., “A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity,” ApJS 175, 356–389 (2008).
  39. D. Ceverino, A. Dekel, D. Tweed, et al., “Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers,” MNRAS 447, 3291–3310 (2015).
  40. S. Veilleux, R. Maiolino, A. D. Bolatto, et al., “Cool outflows in galaxies and their implications,” A&A Rev. 28, 2 (2020).
  41. F. Pacucci, B. Nguyen, S. Carniani, et al., “JWST CEERS and JADES Active Galaxies at z = 4-7 Violate the Local M •-M ⋆ Relation at ¿3σ𝜎\sigmaitalic_σ: Implications for Low-mass Black Holes and Seeding Models,” ApJ 957, L3 (2023).
  42. M. A. Stone, J. Lyu, G. H. Rieke, et al., “Undermassive Host Galaxies of Five z ∼similar-to\sim∼ 6 Luminous Quasars Detected with JWST,” ApJ 964, 90 (2024).
  43. A. Sajina, M. Lacy, and A. Pope, “The Past and Future of Mid-Infrared Studies of AGN,” Universe 8, 356 (2022).
  44. M. Stone, A. Pope, J. McKinney, et al., “Measuring Star Formation and Black Hole Accretion Rates in Tandem Using Mid-infrared Spectra of Local Infrared Luminous Galaxies,” ApJ 934, 27 (2022).
  45. E. E. Schneider and B. E. Robertson, “Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds,” ApJ 834, 144 (2017).
  46. E. González-Alfonso, L. Armus, F. J. Carrera, et al., “Feedback and Feeding in the Context of Galaxy Evolution with SPICA: Direct Characterisation of Molecular Outflows and Inflows,” PASA 34, e054 (2017).
  47. L. Spinoglio, K. M. Dasyra, A. Franceschini, et al., “Far-IR/Submillimeter Spectroscopic Cosmological Surveys: Predictions of Infrared Line Luminosity Functions for z ¡ 4 Galaxies,” ApJ 745, 171 (2012).
  48. E. González-Alfonso, J. Fischer, H. W. W. Spoon, et al., “Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis,” ApJ 836, 11 (2017).
  49. D. Rigopoulou, M. Pereira-Santaella, G. E. Magdis, et al., “On the far-infrared metallicity diagnostics: applications to high-redshift galaxies,” MNRAS 473, 20–29 (2018).
  50. R. Endsley, D. P. Stark, J. Lyu, et al., “ALMA confirmation of an obscured hyperluminous radio-loud AGN at z = 6.853 associated with a dusty starburst in the 1.5 deg2 COSMOS field,” MNRAS 520, 4609–4620 (2023).
  51. L. J. Furtak, A. Zitrin, A. Plat, et al., “JWST UNCOVER: Extremely Red and Compact Object at zphot   7.6 Triply Imaged by A2744,” ApJ 952, 142 (2023).
  52. A. D. Goulding, J. E. Greene, D. J. Setton, et al., “UNCOVER: The Growth of the First Massive Black Holes from JWST/NIRSpec-Spectroscopic Redshift Confirmation of an X-Ray Luminous AGN at z = 10.1,” ApJ 955, L24 (2023).
  53. J. E. Greene, I. Labbe, A. D. Goulding, et al., “UNCOVER spectroscopy confirms a surprising ubiquity of AGN in red galaxies at z>5𝑧5z>5italic_z > 5,” arXiv e-prints , arXiv:2309.05714 (2023).
  54. V. Kokorev, S. Fujimoto, I. Labbe, et al., “UNCOVER: A NIRSpec Identification of a Broad-line AGN at z = 8.50,” ApJ 957, L7 (2023).
  55. X. Shen, P. F. Hopkins, C.-A. Faucher-Giguère, et al., “The bolometric quasar luminosity function at z = 0-7,” MNRAS 495, 3252–3275 (2020).
  56. J. Lyu, G. H. Rieke, and Y. Shi, “Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission,” ApJ 835, 257 (2017).
  57. R. C. Hickox and D. M. Alexander, “Obscured Active Galactic Nuclei,” ARA&A 56, 625–671 (2018).
  58. M. Trebitsch, M. Volonteri, Y. Dubois, et al., “Escape of ionizing radiation from high-redshift dwarf galaxies: role of AGN feedback,” MNRAS 478, 5607–5625 (2018).
  59. Y. Ni, T. Di Matteo, R. Gilli, et al., “QSO obscuration at high redshift (z ≳greater-than-or-equivalent-to\gtrsim≳ 7): predictions from the BLUETIDES simulation,” MNRAS 495, 2135–2151 (2020).
  60. J. Lyu, S. Alberts, G. H. Rieke, et al., “AGN Selection and Demographics: A New Age with JWST/MIRI,” arXiv e-prints , arXiv:2310.12330 (2023).
  61. J. L. Wardlow, A. Cooray, W. Osage, et al., “The Interstellar Medium in High-redshift Submillimeter Galaxies as Probed by Infrared Spectroscopy*,” ApJ 837, 12 (2017).
  62. D. Wilson, A. Cooray, H. Nayyeri, et al., “Stacked Average Far-infrared Spectrum of Dusty Star-forming Galaxies from the Herschel/SPIRE Fourier Transform Spectrometer,” ApJ 848, 30 (2017).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com