Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quick recipes for gravitational-wave selection effects (2404.16930v1)

Published 25 Apr 2024 in astro-ph.HE and gr-qc

Abstract: Accurate modeling of selection effects is a key ingredient to the success of gravitational-wave astronomy. The detection probability plays a crucial role in both statistical population studies, where it enters the hierarchical Bayesian likelihood, and astrophysical modeling, where it is used to convert predictions from population-synthesis codes into observable distributions. We review the most commonly used approximations, extend them, and present some recipes for a straightforward implementation. These include a closed-form expression capturing both multiple detectors and noise realizations written in terms of the so-called Marcum Q-function and a ready-to-use mapping between signal-to-noise ratio thresholds and false-alarm rates from state-of-the-art detection pipelines. The bias introduced by approximating the matched filter signal-to-noise ratio with the optimal signal-to-noise ratio is not symmetric: sources that are nominally below threshold are more likely to be detected than sources above threshold are to be missed. Using both analytical considerations and software injections in detection pipelines, we confirm that including noise realizations when estimating the selection function introduces an average variation of a few %. This effect is most relevant for large catalogs and specific subpopulations of sources at the edge of detectability (e.g. high redshifts).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Mandel I, Farr W M and Gair J R 2019 Mon. Not. R. Astron. Soc. 486 1086–1093 [arXiv:1809.02063]
  2. Talbot C and Golomb J 2023 Mon. Not. R. Astron. Soc. 526 3495–3503 [arXiv:2304.06138]
  3. Abbott R et al. 2023 Phys. Rev. X 13 011048 [arXiv:2111.03634]
  4. Tiwari V 2018 Class. Quantum Grav. 35 145009 [arXiv:1712.00482]
  5. Wysocki D and O’Shaughnessy R 2018 LIGO Document T1800427
  6. Farr W M 2019 Res. Notes AAS 3 66 [arXiv:1904.10879]
  7. Finn L S and Chernoff D F 1993 Phys. Rev. D 47 2198–2219 [arXiv:gr-qc/9301003]
  8. Abbott B P et al. 2018 Living Rev. Relativ. 21 3 [arXiv:1304.0670]
  9. Essick R 2023 Phys. Rev. D 108 043011 [arXiv:2307.02765]
  10. Gerosa D, Pratten G and Vecchio A 2020 Phys. Rev. D 102 103020 [arXiv:2007.06585]
  11. Talbot C and Thrane E 2022 Astrophys. J. 927 76
  12. Mould M, Moore C J and Gerosa D 2024 Phys. Rev. D 109 063013 [arXiv:2311.12117]
  13. Marcum J 1948 IRE Trans. Inf. Theory 6 59–267
  14. Shnidman D A 1989 IEEE Trans. Inf. Theory 35 389–400
  15. Gil A, Segura J and Temme N M 2013 ACM Trans. Math. Softw. 40 1 [arXiv:1311.0681]
  16. Fishbach M, Farr W M and Holz D E 2020 Astrophys. J. Lett. 891 L31 [arXiv:1911.05882]
  17. Mancarella M, Iacovelli F and Gerosa D 2023 Phys. Rev. D 107 L101302 [arXiv:2303.16323]
  18. Essick R and Fishbach M 2024 Astrophys. J. 962 169 [arXiv:2310.02017]
  19. Maggiore M 2007 Gravitational Waves. Vol. 1: Theory and Experiments (Oxford)
  20. Creighton J and Anderson W 2011 Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. (Wiley)
  21. Thrane E and Talbot C 2019 Publ. Astron. Soc. Aust. 36 e010 [arXiv:1809.02293]
  22. Schutz B F 2011 Class. Quantum Grav. 28 125023 [arXiv:1102.5421]
  23. Vitale S 2016 Phys. Rev. D 94 121501 [arXiv:1610.06914]
  24. Park J H 1961 Q. Appl. Math. 19 45–49
  25. Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (Dover)
  26. Gair J R and Moore C J 2015 Phys. Rev. D 91 124062 [arXiv:1504.02767]
  27. Jaranowski P and Królak A 2012 Living Rev. Relativ. 15 4 [arXiv:0711.1115]
  28. Gerosa D 2023 Zenodo 10071541 github.com/dgerosa/marcumq
  29. Aghanim N et al. 2020 Astron. Astrophys. 641 A6 [arXiv:1807.06209]
  30. Abbott R et al. 2023 Phys. Rev. X 13 041039 [arXiv:2111.03606]
  31. Chua A J K, Moore C J and Gair J R 2017 Phys. Rev. D 96 044005 [arXiv:1705.04259]
  32. Virtanen P et al. 2020 Nat. Methods 17 261–272 [arXiv:1907.10121]
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.