Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Polarization textures in crystal supercells with topological bands (2404.16919v2)

Published 25 Apr 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Two-dimensional materials are a highly tunable platform for studying the momentum space topology of the electronic wavefunctions and real space topology in terms of skyrmions, merons, and vortices of an order parameter. Such textures for electronic polarization can exist in moir\'e heterostructures. A quantum-mechanical definition of local polarization textures in insulating supercells was recently proposed. Here, we propose a definition for local polarization that is also valid for systems with topologically non-trivial bands. We introduce semilocal hybrid polarizations, which are valid even when the Wannier functions in a system cannot be made exponentially localized in all dimensions. We use this definition to explicitly show that nontrivial real-space polarization textures can exist in topologically non-trivial systems with non-zero Chern number under (1) an external superlattice potential, and (2) under a stacking-induced moir\'e potential. In the latter, we find that while the magnitude of the local polarization decreases discontinuously across a topological phase transition from trivial to topologically nontrivial, the polarization does not completely vanish. Our findings suggest that band topology and real-space polar topology may coexist in real materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  3. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
  4. R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011).
  5. L. Li and M. Wu, ACS Nano 11, 6382 (2017).
  6. D. Bennett and B. Remez, npj 2D Mater. Appl. 6, 1 (2022).
  7. D. Bennett, Phys. Rev. B 105, 235445 (2022).
  8. M. Angeli and A. H. MacDonald, PNAS 118, e2021826118 (2021).
  9. D. K. Efimkin and A. H. MacDonald, Phys. Rev. B 98, 035404 (2018).
  10. D. Guerci, Y. Mao,  and C. Mora, “Chern mosaic and ideal flat bands in equal-twist trilayer graphene,”  (2023a), arXiv:2305.03702 [cond-mat.mes-hall] .
  11. D. Guerci, Y. Mao,  and C. Mora, “Nature of even and odd magic angles in helical twisted trilayer graphene,”  (2023b), arXiv:2308.02638 [cond-mat.mes-hall] .
  12. L.-Q. Xia, S. C. de la Barrera, A. Uri, A. Sharpe, Y. H. Kwan, Z. Zhu, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, L. Fu, T. Devakul,  and P. Jarillo-Herrero, “Helical trilayer graphene: a moiré platform for strongly-interacting topological bands,”  (2023), arXiv:2310.12204 [cond-mat.mes-hall] .
  13. R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
  14. R. Bianco and R. Resta, Physical Review B 84 (2011), 10.1103/physrevb.84.241106.
  15. D. Vanderbilt and R. King-Smith, Phys. Rev. B 48, 4442 (1993).
  16. R. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
  17. R. Resta, Rev. Mod. Phys. 66, 899 (1994).
  18. D. Vanderbilt, Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators (Cambridge University Press, 2018).
  19. S. Coh and D. Vanderbilt, Phys. Rev. Lett. 102, 107603 (2009).
  20. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
  21. R. Resta, Ferroelectrics 136, 51 (1992), https://doi.org/10.1080/00150199208016065 .
  22. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
  23. L. Balents, SciPost Phys. 7, 48 (2019).
  24. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
  25. A. Kitaev, AIP Conference Proceedings 1134, 22 (2009).
  26. L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
  27. R.-J. Slager, Journal of Physics and Chemistry of Solids 128, 24 (2019).
  28. J. Ahn and B.-J. Yang, Phys. Rev. B 99, 235125 (2019).
  29. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
  30. A. Kitaev, Annals of Physics 321, 2 (2006), january Special Issue.
  31. N. Baù and A. Marrazzo, Phys. Rev. B 109, 014206 (2024).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com