Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Based Efficient Approximation of Data-Enabled Predictive Control (2404.16727v3)

Published 25 Apr 2024 in eess.SY and cs.SY

Abstract: Data-Enabled Predictive Control (DeePC) bypasses the need for system identification by directly leveraging raw data to formulate optimal control policies. However, the size of the optimization problem in DeePC grows linearly with respect to the data size, which prohibits its application to resource-constrained systems due to high computational costs. In this paper, we propose an efficient approximation of DeePC, whose size is invariant with respect to the amount of data collected, via differentiable convex programming. Specifically, the optimization problem in DeePC is decomposed into two parts: a control objective and a scoring function that evaluates the likelihood of a guessed I/O sequence, the latter of which is approximated with a size-invariant learned optimization problem. The proposed method is validated through numerical simulations on a quadruple tank system, illustrating that the learned controller can reduce the computational time of DeePC by a factor of 5 while maintaining its control performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. H. Hjalmarsson, “From experiment design to closed-loop control,” Automatica, vol. 41, no. 3, pp. 393–438, 2005.
  2. B. A. Ogunnaike, “A contemporary industrial perspective on process control theory and practice,” Annual Reviews in Control, vol. 20, pp. 1–8, 1996.
  3. A. Tsiamis and G. J. Pappas, “Linear systems can be hard to learn,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 2903–2910.
  4. J. Li, S. Sun, and Y. Mo, “Fundamental limit on siso system identification,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 856–861.
  5. C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Transactions on Automatic Control, vol. 65, no. 3, pp. 909–924, 2019.
  6. F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect data-driven control formulations via regularizations and relaxations,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 883–897, 2022.
  7. F. Zhao, F. Dörfler, A. Chiuso, and K. You, “Data-enabled policy optimization for direct adaptive learning of the lqr,” arXiv preprint arXiv:2401.14871, 2024.
  8. J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the shallows of the deepc,” in 2019 18th European Control Conference (ECC).   IEEE, 2019, pp. 307–312.
  9. J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
  10. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven model predictive control with stability and robustness guarantees,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2020.
  11. S. Baros, C.-Y. Chang, G. E. Colon-Reyes, and A. Bernstein, “Online data-enabled predictive control,” Automatica, vol. 138, p. 109926, 2022.
  12. P. G. Carlet, A. Favato, S. Bolognani, and F. Dörfler, “Data-driven continuous-set predictive current control for synchronous motor drives,” IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6637–6646, 2022.
  13. E. Elokda, J. Coulson, P. N. Beuchat, J. Lygeros, and F. Dörfler, “Data-enabled predictive control for quadcopters,” International Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8916–8936, 2021.
  14. F. Fiedler and S. Lucia, “On the relationship between data-enabled predictive control and subspace predictive control,” in 2021 European Control Conference (ECC).   IEEE, 2021, pp. 222–229.
  15. L. Huang, J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control for grid-connected power converters,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 8130–8135.
  16. F. Wegner, “Data-enabled predictive control of robotic systems,” Master’s thesis, ETH Zurich, 2021.
  17. K. Zhang, Y. Zheng, C. Shang, and Z. Li, “Dimension reduction for efficient data-enabled predictive control,” IEEE Control Systems Letters, 2023.
  18. P. G. Carlet, A. Favato, R. Torchio, F. Toso, S. Bolognani, and F. Dörfler, “Real-time feasibility of data-driven predictive control for synchronous motor drives,” IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1672–1682, 2022.
  19. V. Breschi, A. Chiuso, and S. Formentin, “Data-driven predictive control in a stochastic setting: A unified framework,” Automatica, vol. 152, p. 110961, 2023.
  20. M. Sader, Y. Wang, D. Huang, C. Shang, and B. Huang, “Causality-informed data-driven predictive control,” arXiv preprint arXiv:2311.09545, 2023.
  21. J. Coulson, J. Lygeros, and F. Dörfler, “Distributionally robust chance constrained data-enabled predictive control,” IEEE Transactions on Automatic Control, vol. 67, no. 7, pp. 3289–3304, 2021.
  22. I. Markovsky, L. Huang, and F. Dörfler, “Data-driven control based on the behavioral approach: From theory to applications in power systems,” IEEE Control Systems Magazine, vol. 43, no. 5, pp. 28–68, 2023.
  23. N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
  24. K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proceedings of the 27th international conference on international conference on machine learning, 2010, pp. 399–406.
  25. V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.
  26. Y. Lu, Z. Li, Y. Zhou, N. Li, and Y. Mo, “Mpc-inspired reinforcement learning for verifiable model-free control,” arXiv preprint arXiv:2312.05332, 2023.
  27. J. Eckstein and D. P. Bertsekas, “On the douglas—rachford splitting method and the proximal point algorithm for maximal monotone operators,” Mathematical programming, vol. 55, pp. 293–318, 1992.
  28. K. H. Johansson, “The quadruple-tank process: A multivariable laboratory process with an adjustable zero,” IEEE Transactions on control systems technology, vol. 8, no. 3, pp. 456–465, 2000.
Citations (2)

Summary

We haven't generated a summary for this paper yet.