Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Recursive Data-enabled Predictive Control (Extended Version) (2309.13755v3)

Published 24 Sep 2023 in eess.SY and cs.SY

Abstract: In the field of model predictive control, Data-enabled Predictive Control (DeePC) offers direct predictive control, bypassing traditional modeling. However, challenges emerge with increased computational demand due to recursive data updates. This paper introduces a novel recursive updating algorithm for DeePC. It emphasizes the use of Singular Value Decomposition (SVD) for efficient low-dimensional transformations of DeePC in its general form, as well as a fast SVD update scheme. Importantly, our proposed algorithm is highly flexible due to its reliance on the general form of DeePC, which is demonstrated to encompass various data-driven methods that utilize Pseudoinverse and Hankel matrices. This is exemplified through a comparison to Subspace Predictive Control, where the algorithm achieves asymptotically consistent prediction for stochastic linear time-invariant systems. Our proposed methodologies' efficacy is validated through simulation studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
  2. L. Schmitt, J. Beerwerth, M. Bahr, and D. Abel, “Data-driven predictive control with online adaption: Application to a fuel cell system,” IEEE Transactions on Control Systems Technology, 2023.
  3. K. Chen, K. Zhang, X. Lin, Y. Zheng, X. Yin, X. Hu, Z. Song, and Z. Li, “Data-enabled predictive control for fast charging of lithium-ion batteries with constraint handling,” arXiv preprint arXiv:2209.12862, 2022.
  4. J. Shi, Y. Lian, C. Salzmann, and C. N. Jones, “Adaptive data-driven predictive control as a module in building control hierarchy: A case study of demand response in switzerland,” arXiv preprint arXiv:2307.08866, 2023.
  5. M. Yin, H. Cai, A. Gattiglio, F. Khayatian, R. S. Smith, and P. Heer, “Data-driven predictive control for demand side management: Theoretical and experimental results,” Applied Energy, vol. 353, p. 122101, 2024.
  6. L. Huang, J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control for grid-connected power converters,” in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 8130–8135, IEEE, 2019.
  7. J. Wang, Y. Zheng, J. Dong, C. Chen, M. Cai, K. Li, and Q. Xu, “Implementation and experimental validation of data-driven predictive control for dissipating stop-and-go waves in mixed traffic,” IEEE Internet of Things Journal, 2023.
  8. P. Van Overschee and B. De Moor, Subspace identification for linear systems: Theory—Implementation—Applications. Springer Science & Business Media, 2012.
  9. W. Favoreel, B. De Moor, and M. Gevers, “Spc: Subspace predictive control,” IFAC Proceedings Volumes, vol. 32, no. 2, pp. 4004–4009, 1999.
  10. S. J. Qin, “An overview of subspace identification,” Computers & chemical engineering, vol. 30, no. 10-12, pp. 1502–1513, 2006.
  11. G. Van der Veen, J.-W. van Wingerden, M. Bergamasco, M. Lovera, and M. Verhaegen, “Closed-loop subspace identification methods: an overview,” IET Control Theory & Applications, vol. 7, no. 10, pp. 1339–1358, 2013.
  12. J. Dong, M. Verhaegen, and E. Holweg, “Closed-loop subspace predictive control for fault tolerant mpc design,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 3216–3221, 2008.
  13. J.-W. van Wingerden, S. P. Mulders, R. Dinkla, T. Oomen, and M. Verhaegen, “Data-enabled predictive control with instrumental variables: the direct equivalence with subspace predictive control,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 2111–2116, IEEE, 2022.
  14. R. Dinkla, S. P. Mulders, J. W. van Wingerden, and T. A. Oomen, “Closed-loop aspects of data-enabled predictive control,” in IFAC 22st Triennial World Congress, 2023.
  15. Y. Wang, Y. Qiu, M. Sader, D. Huang, and C. Shang, “Data-driven predictive control using closed-loop data: An instrumental variable approach,” arXiv preprint arXiv:2309.05916, 2023.
  16. K. Zhang, Y. Zheng, and Z. Li, “Dimension reduction for efficient data-enabled predictive control,” arXiv preprint arXiv:2211.03697, 2022.
  17. S. Baros, C.-Y. Chang, G. E. Colon-Reyes, and A. Bernstein, “Online data-enabled predictive control,” Automatica, vol. 138, p. 109926, 2022.
  18. M. Lovera, T. Gustafsson, and M. Verhaegen, “Recursive subspace identification of linear and non-linear wiener state-space models,” Automatica, vol. 36, no. 11, pp. 1639–1650, 2000.
  19. P. Verheijen, G. R. G. da Silva, and M. Lazar, “Recursive data–driven predictive control with persistence of excitation conditions,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 467–473, IEEE, 2022.
  20. Y. Lian, J. Shi, M. Koch, and C. N. Jones, “Adaptive robust data-driven building control via bilevel reformulation: An experimental result,” IEEE Transactions on Control Systems Technology, 2023.
  21. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking mpc for nonlinear systems—part ii: The data-driven case,” IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 4406–4421, 2022.
  22. J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the shallows of the deepc,” in 2019 18th Eur. Control Conf. (ECC), pp. 307–312, IEEE, 2019.
  23. J. Coulson, J. Lygeros, and F. Dörfler, “Regularized and distributionally robust data-enabled predictive control,” in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 2696–2701, IEEE, 2019.
  24. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
  25. M. Brand, “Fast low-rank modifications of the thin singular value decomposition,” Linear algebra and its applications, vol. 415, no. 1, pp. 20–30, 2006.
  26. J. R. Bunch and C. P. Nielsen, “Updating the singular value decomposition,” Numerische Mathematik, vol. 31, no. 2, pp. 111–129, 1978.
  27. M. Gu and S. C. Eisenstat, “Downdating the singular value decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 3, pp. 793–810, 1995.
  28. I. Markovsky and P. Rapisarda, “Data-driven simulation and control,” International Journal of Control, vol. 81, no. 12, pp. 1946–1959, 2008.
  29. Y. Lian, J. Shi, and C. N. Jones, “Physically consistent multiple-step data-driven predictions using physics-based filters,” IEEE Control Systems Letters, 2023.
  30. M. S. Turan and G. Ferrari-Trecate, “Data-driven unknown-input observers and state estimation,” IEEE Control Systems Letters, vol. 6, pp. 1424–1429, 2021.
  31. J. Shi, Y. Lian, and C. N. Jones, “Data-driven input reconstruction and experimental validation,” IEEE Control Systems Letters, vol. 6, pp. 3259–3264, 2022.
  32. R. Penrose, “On best approximate solutions of linear matrix equations,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 52, pp. 17–19, Cambridge University Press, 1956.
  33. E. O’Dwyer, E. C. Kerrigan, P. Falugi, M. Zagorowska, and N. Shah, “Data-driven predictive control with improved performance using segmented trajectories,” IEEE Trans. Control Syst. Technol., 2022.
  34. J. C. A. Barata and M. S. Hussein, “The moore–penrose pseudoinverse: A tutorial review of the theory,” Brazilian Journal of Physics, vol. 42, pp. 146–165, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.