Monolithic two-level Schwarz preconditioner for Biot's consolidation model in two space dimensions (2404.16684v1)
Abstract: This paper addresses the construction and analysis of a class of domain decomposition methods for the iterative solution of the quasi-static Biot problem in three-field formulation. The considered discrete model arises from time discretization by the implicit Euler method and space discretization by a family of strongly mass-conserving methods exploiting $H{div}$-conforming approximations of the solid displacement and fluid flux fields. For the resulting saddle-point problem, we construct monolithic overlapping domain decomposition (DD) methods whose analysis relies on a transformation into an equivalent symmetric positive definite system and on stable decompositions of the involved finite element spaces under proper problem-dependent norms. Numerical results on two-dimensional test problems are in accordance with the provided theoretical uniform convergence estimates for the two-level multiplicative Schwarz method.
- The deal.II library, version 9.4. J. Numer. Math., 30(3):231–246, 2022.
- Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem. Numer. Linear Algebra Appl., 22(6):930–949, 2015.
- Preconditioning in H(div)𝐻divH({\rm div})italic_H ( roman_div ) and applications. Math. Comput., 66(219):957–984, 1997.
- Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47(2):281–354, 2010.
- Robust block preconditioners for Biot’s model. In Domain Decomposition Methods in Science and Engineering XXIV. DD 2017. Lecture Notes in Computational Science and Engineering, volume 125, pages 3–16. Springer, Cham, 2019.
- Monolithic multigrid for a reduced-quadrature discretization of poroelasticity. SIAM J. Sci. Comput., 45(3):S54–S81, 2023.
- Convergence analysis of single rate and multirate fixed stress split iterative coupling schemes in heterogeneous poroelastic media. Numer. Methods Partial Differential Eq., pages 1–25, 2023.
- A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput., 38(3):A1508–A1537, 2016.
- Mixed finite element methods and applications. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2013.
- M.A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12(2):155–164, 1941.
- M.A. Biot. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys., 26(2):182–185, 1955.
- Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot’s equations utilizing total pressure. SIAM J. Sci. Comput., 43(4):B961–B983, 2021.
- Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math., 17(3):377–396, 2017.
- F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 8(R2):129–151, 1974.
- S.C. Brenner. Korn’s inequalities for piecewise H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT vector fields. Math. Comput., 73(247):1067–1087, 2004.
- S.C. Brenner and K. Wang. Two-level additive Schwarz preconditioners for C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty methods. Numer. Math., 102:231–255, 2005.
- A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput., 74:1067–1095, 2005.
- O. Coussy. Poromechanics. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2004.
- E. Detournay and A. H.-D. Cheng. Fundamentals of poroelasticity. In C. Fairhurst, editor, Analysis and Design Methods, volume 2 of Comprehensive Rock Engineering: Principles, Practice and Projects, chapter 5, pages 113–171. Pergamon, Oxford, 1993.
- L. Desvillettes and C. Villani. On a variant of korn’s inequality arising in statistical mechanics. ESAIM: Control, Optimisation and Calculus of Variations, 8:603–619, 2002.
- M. Dryja and O. B. Widlund. Domain decomposition algorithms with small overlap. SIAM J. Numer. Anal., 15(3):604–620, 1994.
- X. Feng and O. Karakashian. Analysis of two-level overlapping additive Schwarz preconditioners for a discontinuous Galerkin method. In Proceedings of the thirteenth international conference on domain decomposition methods, pages 235–243. DDM.org Press, 2001.
- New stabilized discretizations for poroelasticity equations. In G. Nikolov, N. Kolkovska, and K. Georgiev, editors, Numerical Methods and Applications, pages 3–14, Cham, 2019. Springer International Publishing.
- R. Hiptmair. Multigrid method for h(div)ℎ𝑑𝑖𝑣h(div)italic_h ( italic_d italic_i italic_v ) in three dimensions. Electron. Trans. Numer. Anal., 6:133–152, 1997.
- Q. Hong and J. Kraus. Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal., 48:202–226, 2018.
- Robust approximation of generalized Biot-Brinkman problems. J. Sci. Comput., 93(3):Paper No. 77, 28, 2022.
- Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Algebra Appl., 26(4):e2242, 2019.
- Parameter-robust uzawa-type iterative methods for double saddle point problems arising in biot’s consolidation and multiple-network poroelasticity models. Math. Models Methods Appl. Sci., 30(13):2523–2555, 2020.
- A new practical framework for the stability analysis of perturbed saddle-point problems and applications. Math. Comp., 92(340):607–634, 2023.
- Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems. Multiscale Model. Simul., 18(2):916–941, 2020.
- P. Hansbo and M.G. Larson. Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Engrg., 191(17–18):1895–1908, 2002.
- A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math., 310:143–154, 2017.
- A fixed-stress type splitting method for nonlinear poroelasticity, 2023.
- Hybridized discontinuous Galerkin/hybrid mixed methods for a multiple network poroelasticity model with application in biomechanics. SIAM J. Sci. Comput., 45(6):B802–B827, 2023.
- G. Kanschat and Y. Mao. Multigrid methods for 𝐇divsuperscript𝐇div\mathbf{H}^{\text{div}}bold_H start_POSTSUPERSCRIPT div end_POSTSUPERSCRIPT-conforming discontinuous Galerkin methods for the Stokes equations. J. Numer. Math., 23(1):51–66, 2015.
- G. Kanschat and B. Riviere. A finite element method with strong mass conservation for Biot’s linear consolidation model. J. of Scientific Computing, 77(3):1762–1779, Dec 2018.
- G. Kanschat and N. Sharma. Divergence-conforming discontinuous Galerkin methods and C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty methods. SIAM J. Numer. Anal., 52(4):1822–1842, 2014.
- Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. SPE Journal, 16(2):1–19, 2011.
- J.J. Lee. Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput., 69(2):610–632, 2016.
- Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput., 39(1):A1–A24, 2017.
- A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput., 41(2):A722–A747, 2019.
- Robust subspace correction methods for nearly singular systems. Math. Models Methods Appl. Sci., 17(11):1937–1963, 2007.
- S. Lee and S.-Y. Yi. Locking-free and locally-conservative enriched Galerkin method for poroelasticity. J. Sci. Comput., 94(26), 2023.
- S. Meggendorfer. Multilevel Schwarz Methods for Porous Media Problems. Dissertation, Universität Heidelberg, 2023.
- Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Engrg., 95(3):359–382, 1992.
- On stability and convergence of finite element approximations of Biot’s consolidation problem. Inter. J. Numer. Methods Engrg., 37(4):645–667, 1994.
- A. Mikelić and M.F. Wheeler. Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci., 17:455–461, 2013.
- R. Oyarzúa and R. Ruiz-Baier. Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal., 54(5):2951–2973, 2016.
- Weighted Poincaré inequalities and applications in domain decomposition. In Domain decomposition methods in science and engineering XIX, volume 78 of Lect. Notes Comput. Sci. Eng., pages 197–204. Springer, Heidelberg, 2011.
- Weighted Poincaré inequalities. IMA J. Numer. Anal., 33(2):652–686, 2013.
- A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci., 11(2):131–144, 2007.
- A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci., 11(2):145–158, 2007.
- A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci., 12(4):417–435, 2008.
- On the optimization of the fixed-stress splitting for Biot’s equations. Inter. J. Numer. Methods Engrg., 120(2):179–194, 2019.
- J. Schöberl. Robust Multigrid Methods for Parameter Dependent Problems. Dissertation, Johannes Kepler Universität Linz, 1999.
- R.E. Showalter. Diffusion in poro-elastic media. J. Math. Anal. Appl., 251(1):310–340, 2000.
- hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40:2171–2194, 2003.
- Multilevel methods for elliptic problems with highly varying coefficients on nonaligned coarse grids. SIAM J. Numer. Anal., 50(3):1675–1694, 2012.
- K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke, 1925.
- K. Terzaghi. Theoretical Soil Mechanics. Wiley, 1943.
- A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory. Springer-Verlag, Berlin Heidelberg, 2010.
- A mixed virtual element method for Biot’s consolidation model. Computers & Mathematics with Applications, 126:31–42, 2022.
- S.-Y. Yi. A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differential Equations, 29(5):1749–1777, 2013.
- S.-Y. Yi. Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differential Equations, 30(4):1189–1210, 2014.
- A. Ženíšek. The existence and uniqueness theorem in Biot’s consolidation theory. Aplikace matematiky, 29(3):194–211, 1984.
- A. Ženíšek. Finite element methods for coupled thermoelasticity and coupled consolidation of clay. RAIRO Anal. Numér., 18(2):183–205, 1984.