Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiscale mortar mixed finite element methods for the Biot system of poroelasticity (2211.02949v2)

Published 5 Nov 2022 in math.NA and cs.NA

Abstract: We develop a mixed finite element domain decomposition method on non-matching grids for the Biot system of poroelasticity. A displacement-pressure vector mortar function is introduced on the interfaces and utilized as a Lagrange multiplier to impose weakly continuity of normal stress and normal velocity. The mortar space can be on a coarse scale, resulting in a multiscale approximation. We establish existence, uniqueness, stability, and error estimates for the semidiscrete continuous-in-time formulation under a suitable condition on the richness of the mortar space. We further consider a fully-discrete method based on the backward Euler time discretization and show that the solution of the algebraic system at each time step can be reduced to solving a positive definite interface problem for the composite mortar variable. A multiscale stress-flux basis is constructed, which makes the number of subdomain solves independent of the number of iterations required for the interface problem, as well as the number of time steps. We present numerical experiments verifying the theoretical results and illustrating the multiscale capabilities of the method for a heterogeneous benchmark problem.

Summary

We haven't generated a summary for this paper yet.