Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel-State duality with centers (2404.16004v2)

Published 24 Apr 2024 in quant-ph, hep-th, math-ph, and math.MP

Abstract: We study extensions of the mappings arising in usual channel-state duality to the case of Hilbert spaces with a direct sum structure. This setting arises in representations of algebras with centers, which are commonly associated with constraints, and it has many physical applications from quantum many-body theory to holography and quantum gravity. We establish that there is a general relationship between non-separability of the state and the isometric properties of the induced channel. We also provide a generalisation of our approach to algebras of trace-class operators on infinite dimensional Hilbert spaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. K. V. Antipin. Channel-state duality and the separability problem, May 2020. URL http://arxiv.org/abs/1909.13309. arXiv:1909.13309 [math-ph, physics:quant-ph].
  2. E. Bianchi and P. Dona. Typical entanglement entropy in the presence of a center: Page curve and its variance. Physical Review D, 100(10):105010, Nov. 2019. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.100.105010. URL http://arxiv.org/abs/1904.08370. arXiv:1904.08370 [cond-mat, physics:gr-qc, physics:hep-th].
  3. E. Bianchi and E. R. Livine. Loop Quantum Gravity and Quantum Information, Feb. 2023. URL http://arxiv.org/abs/2302.05922. arXiv:2302.05922 [gr-qc].
  4. Remarks on entanglement entropy for gauge fields. Physical Review D, 89(8):085012, Apr. 2014. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.89.085012. URL http://arxiv.org/abs/1312.1183. arXiv:1312.1183 [cond-mat, physics:hep-th, physics:quant-ph].
  5. Holographic properties of superposed spin networks, Oct. 2022. URL http://arxiv.org/abs/2207.07625. arXiv:2207.07625 [gr-qc, physics:hep-th, physics:quant-ph].
  6. Holographic Tensor Networks with Bulk Gauge Symmetries, Sept. 2023. URL http://arxiv.org/abs/2309.06436. arXiv:2309.06436 [hep-th].
  7. W. Donnelly. Decomposition of entanglement entropy in lattice gauge theory. Physical Review D, 85(8):085004, Apr. 2012. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.85.085004. URL http://arxiv.org/abs/1109.0036. arXiv:1109.0036 [cond-mat, physics:gr-qc, physics:hep-lat, physics:hep-th, physics:quant-ph].
  8. W. Donnelly and A. C. Wall. Entanglement Entropy of Electromagnetic Edge Modes. Physical Review Letters, 114(11):111603, Mar. 2015. doi: 10.1103/PhysRevLett.114.111603. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.111603. Publisher: American Physical Society.
  9. L. Freidel and A. Perez. Quantum gravity at the corner. arXiv:1507.02573 [gr-qc, physics:hep-th], July 2015. URL http://arxiv.org/abs/1507.02573. arXiv: 1507.02573.
  10. Corner symmetry and quantum geometry, Feb. 2023. URL http://arxiv.org/abs/2302.12799. arXiv:2302.12799 [gr-qc, physics:hep-th].
  11. Holographic duality from random tensor networks. Journal of High Energy Physics, 2016(11):9, Nov. 2016. ISSN 1029-8479. doi: 10.1007/JHEP11(2016)009. URL http://arxiv.org/abs/1601.01694. arXiv: 1601.01694 version: 3.
  12. S. Hollands and K. Sanders. Entanglement measures and their properties in quantum field theory, May 2018. URL http://arxiv.org/abs/1702.04924. arXiv:1702.04924 [gr-qc, physics:hep-th, physics:math-ph, physics:quant-ph].
  13. Channel-state duality. Physical Review A, 87(2):022310, Feb. 2013. ISSN 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.87.022310. URL https://link.aps.org/doi/10.1103/PhysRevA.87.022310.
  14. J. Lin and D. Radicevic. Comments on Defining Entanglement Entropy, Sept. 2018. URL http://arxiv.org/abs/1808.05939. arXiv:1808.05939 [cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph].
  15. The structure of Renyi entropic inequalities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2158):20120737, Oct. 2013. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.2012.0737. URL http://arxiv.org/abs/1212.0248. arXiv:1212.0248 [math-ph, physics:quant-ph].
  16. C.-T. Ma. Entanglement with Centers. Journal of High Energy Physics, 2016(1):70, Jan. 2016. ISSN 1029-8479. doi: 10.1007/JHEP01(2016)070. URL http://arxiv.org/abs/1511.02671. arXiv:1511.02671 [hep-th].
  17. Comment on “Channel-state duality”. Physical Review A, 88(2):026301, Aug. 2013. ISSN 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.88.026301. URL https://link.aps.org/doi/10.1103/PhysRevA.88.026301.
  18. M. Muger. On trace class operators (and Hilbert-Schmidt operators). ., Apr. 2022. URL https://www.math.ru.nl/~mueger/PDF/Trace-class.pdf.
  19. Note1. For the |Ψ±⟩ketsuperscriptΨplus-or-minus\mathinner{|{\Psi^{\pm}}\rangle}| roman_Ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ⟩ states, the corresponding operator is X⁢σ1𝑋superscript𝜎1X\sigma^{1}italic_X italic_σ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, so multiplied by a Pauli matrix.
  20. Note2. We will for simplicity work in this section with bounded operators on finite dimensional Hilbert spaces.
  21. Note3. Notice that, in particular, this is a pendent of properties in local QFT, as formalised by Haag duality, where subsystems are identified and distinguished by their localization on the spacetime manifold.
  22. Note4. We assume here that the algebras contain a unit, so an identity operator.
  23. Note5. This 2-out-of-3 property appears to be due to the relatively rigid way entanglement shows itself in pure states, as manifested through there being a (mostly unique) measure of entanglement for pure states, which is not the case for mixed states.
  24. Note6. These simply take two factors in a tensor product and swap them, 𝒮⁢|a⟩⊗|b⟩=|b⟩⊗|a⟩tensor-product𝒮ket𝑎ket𝑏tensor-productket𝑏ket𝑎\mathcal{S}\mathinner{|{a}\rangle}\otimes\mathinner{|{b}\rangle}=\mathinner{|{% b}\rangle}\otimes\mathinner{|{a}\rangle}caligraphic_S start_ATOM | italic_a ⟩ end_ATOM ⊗ start_ATOM | italic_b ⟩ end_ATOM = start_ATOM | italic_b ⟩ end_ATOM ⊗ start_ATOM | italic_a ⟩ end_ATOM.
  25. Note7. However, we might still use measured Rényi entropies and mutual information[30]. These have a known expression and satisfy nice properties as an analogue of the von Neumann mutual information.
  26. Note8. This assumes an extension map and associated partial trace operation have been chosen.
  27. Note9. The usual issues of domains apply, but as long as the extensions are bounded, we may neglect them.
  28. D. N. Page. Average Entropy of a Subsystem. Physical Review Letters, 71(9):1291–1294, Aug. 1993. ISSN 0031-9007. doi: 10.1103/PhysRevLett.71.1291. URL http://arxiv.org/abs/gr-qc/9305007. arXiv:gr-qc/9305007.
  29. Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. Journal of High Energy Physics, 2015(6):149, June 2015. ISSN 1029-8479. doi: 10.1007/JHEP06(2015)149. URL http://arxiv.org/abs/1503.06237. arXiv: 1503.06237 version: 2.
  30. Computable R\’enyi mutual information: Area laws and correlations. Quantum, 5:541, Sept. 2021. ISSN 2521-327X. doi: 10.22331/q-2021-09-14-541. URL http://arxiv.org/abs/2103.01709. arXiv:2103.01709 [cond-mat, physics:quant-ph].
  31. J. Watrous. The Theory of Quantum Information. Cambridge University Press, 1 edition, Apr. 2018. ISBN 978-1-316-84814-2 978-1-107-18056-7. doi: 10.1017/9781316848142. URL https://www.cambridge.org/core/product/identifier/9781316848142/type/book.
  32. P. Zanardi. Virtual Quantum Subsystems. Physical Review Letters, 87(7):077901, July 2001. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.87.077901. URL http://arxiv.org/abs/quant-ph/0103030. arXiv:quant-ph/0103030.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com