2000 character limit reached
Channel-State duality with centers (2404.16004v2)
Published 24 Apr 2024 in quant-ph, hep-th, math-ph, and math.MP
Abstract: We study extensions of the mappings arising in usual channel-state duality to the case of Hilbert spaces with a direct sum structure. This setting arises in representations of algebras with centers, which are commonly associated with constraints, and it has many physical applications from quantum many-body theory to holography and quantum gravity. We establish that there is a general relationship between non-separability of the state and the isometric properties of the induced channel. We also provide a generalisation of our approach to algebras of trace-class operators on infinite dimensional Hilbert spaces.
- K. V. Antipin. Channel-state duality and the separability problem, May 2020. URL http://arxiv.org/abs/1909.13309. arXiv:1909.13309 [math-ph, physics:quant-ph].
- E. Bianchi and P. Dona. Typical entanglement entropy in the presence of a center: Page curve and its variance. Physical Review D, 100(10):105010, Nov. 2019. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.100.105010. URL http://arxiv.org/abs/1904.08370. arXiv:1904.08370 [cond-mat, physics:gr-qc, physics:hep-th].
- E. Bianchi and E. R. Livine. Loop Quantum Gravity and Quantum Information, Feb. 2023. URL http://arxiv.org/abs/2302.05922. arXiv:2302.05922 [gr-qc].
- Remarks on entanglement entropy for gauge fields. Physical Review D, 89(8):085012, Apr. 2014. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.89.085012. URL http://arxiv.org/abs/1312.1183. arXiv:1312.1183 [cond-mat, physics:hep-th, physics:quant-ph].
- Holographic properties of superposed spin networks, Oct. 2022. URL http://arxiv.org/abs/2207.07625. arXiv:2207.07625 [gr-qc, physics:hep-th, physics:quant-ph].
- Holographic Tensor Networks with Bulk Gauge Symmetries, Sept. 2023. URL http://arxiv.org/abs/2309.06436. arXiv:2309.06436 [hep-th].
- W. Donnelly. Decomposition of entanglement entropy in lattice gauge theory. Physical Review D, 85(8):085004, Apr. 2012. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.85.085004. URL http://arxiv.org/abs/1109.0036. arXiv:1109.0036 [cond-mat, physics:gr-qc, physics:hep-lat, physics:hep-th, physics:quant-ph].
- W. Donnelly and A. C. Wall. Entanglement Entropy of Electromagnetic Edge Modes. Physical Review Letters, 114(11):111603, Mar. 2015. doi: 10.1103/PhysRevLett.114.111603. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.111603. Publisher: American Physical Society.
- L. Freidel and A. Perez. Quantum gravity at the corner. arXiv:1507.02573 [gr-qc, physics:hep-th], July 2015. URL http://arxiv.org/abs/1507.02573. arXiv: 1507.02573.
- Corner symmetry and quantum geometry, Feb. 2023. URL http://arxiv.org/abs/2302.12799. arXiv:2302.12799 [gr-qc, physics:hep-th].
- Holographic duality from random tensor networks. Journal of High Energy Physics, 2016(11):9, Nov. 2016. ISSN 1029-8479. doi: 10.1007/JHEP11(2016)009. URL http://arxiv.org/abs/1601.01694. arXiv: 1601.01694 version: 3.
- S. Hollands and K. Sanders. Entanglement measures and their properties in quantum field theory, May 2018. URL http://arxiv.org/abs/1702.04924. arXiv:1702.04924 [gr-qc, physics:hep-th, physics:math-ph, physics:quant-ph].
- Channel-state duality. Physical Review A, 87(2):022310, Feb. 2013. ISSN 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.87.022310. URL https://link.aps.org/doi/10.1103/PhysRevA.87.022310.
- J. Lin and D. Radicevic. Comments on Defining Entanglement Entropy, Sept. 2018. URL http://arxiv.org/abs/1808.05939. arXiv:1808.05939 [cond-mat, physics:hep-lat, physics:hep-th, physics:quant-ph].
- The structure of Renyi entropic inequalities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2158):20120737, Oct. 2013. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.2012.0737. URL http://arxiv.org/abs/1212.0248. arXiv:1212.0248 [math-ph, physics:quant-ph].
- C.-T. Ma. Entanglement with Centers. Journal of High Energy Physics, 2016(1):70, Jan. 2016. ISSN 1029-8479. doi: 10.1007/JHEP01(2016)070. URL http://arxiv.org/abs/1511.02671. arXiv:1511.02671 [hep-th].
- Comment on “Channel-state duality”. Physical Review A, 88(2):026301, Aug. 2013. ISSN 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.88.026301. URL https://link.aps.org/doi/10.1103/PhysRevA.88.026301.
- M. Muger. On trace class operators (and Hilbert-Schmidt operators). ., Apr. 2022. URL https://www.math.ru.nl/~mueger/PDF/Trace-class.pdf.
- Note1. For the |Ψ±⟩ketsuperscriptΨplus-or-minus\mathinner{|{\Psi^{\pm}}\rangle}| roman_Ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ⟩ states, the corresponding operator is Xσ1𝑋superscript𝜎1X\sigma^{1}italic_X italic_σ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, so multiplied by a Pauli matrix.
- Note2. We will for simplicity work in this section with bounded operators on finite dimensional Hilbert spaces.
- Note3. Notice that, in particular, this is a pendent of properties in local QFT, as formalised by Haag duality, where subsystems are identified and distinguished by their localization on the spacetime manifold.
- Note4. We assume here that the algebras contain a unit, so an identity operator.
- Note5. This 2-out-of-3 property appears to be due to the relatively rigid way entanglement shows itself in pure states, as manifested through there being a (mostly unique) measure of entanglement for pure states, which is not the case for mixed states.
- Note6. These simply take two factors in a tensor product and swap them, 𝒮|a⟩⊗|b⟩=|b⟩⊗|a⟩tensor-product𝒮ket𝑎ket𝑏tensor-productket𝑏ket𝑎\mathcal{S}\mathinner{|{a}\rangle}\otimes\mathinner{|{b}\rangle}=\mathinner{|{% b}\rangle}\otimes\mathinner{|{a}\rangle}caligraphic_S start_ATOM | italic_a ⟩ end_ATOM ⊗ start_ATOM | italic_b ⟩ end_ATOM = start_ATOM | italic_b ⟩ end_ATOM ⊗ start_ATOM | italic_a ⟩ end_ATOM.
- Note7. However, we might still use measured Rényi entropies and mutual information[30]. These have a known expression and satisfy nice properties as an analogue of the von Neumann mutual information.
- Note8. This assumes an extension map and associated partial trace operation have been chosen.
- Note9. The usual issues of domains apply, but as long as the extensions are bounded, we may neglect them.
- D. N. Page. Average Entropy of a Subsystem. Physical Review Letters, 71(9):1291–1294, Aug. 1993. ISSN 0031-9007. doi: 10.1103/PhysRevLett.71.1291. URL http://arxiv.org/abs/gr-qc/9305007. arXiv:gr-qc/9305007.
- Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. Journal of High Energy Physics, 2015(6):149, June 2015. ISSN 1029-8479. doi: 10.1007/JHEP06(2015)149. URL http://arxiv.org/abs/1503.06237. arXiv: 1503.06237 version: 2.
- Computable R\’enyi mutual information: Area laws and correlations. Quantum, 5:541, Sept. 2021. ISSN 2521-327X. doi: 10.22331/q-2021-09-14-541. URL http://arxiv.org/abs/2103.01709. arXiv:2103.01709 [cond-mat, physics:quant-ph].
- J. Watrous. The Theory of Quantum Information. Cambridge University Press, 1 edition, Apr. 2018. ISBN 978-1-316-84814-2 978-1-107-18056-7. doi: 10.1017/9781316848142. URL https://www.cambridge.org/core/product/identifier/9781316848142/type/book.
- P. Zanardi. Virtual Quantum Subsystems. Physical Review Letters, 87(7):077901, July 2001. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.87.077901. URL http://arxiv.org/abs/quant-ph/0103030. arXiv:quant-ph/0103030.