Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond trace class -- Tensor products of Hilbert spaces and operator ideals in quantum physics (2308.04627v3)

Published 8 Aug 2023 in math.FA and quant-ph

Abstract: Starting from the meaning of the conjugate of a complex Hilbert space, including a related application of the theorem of Fr\'{e}chet-Riesz (by which an analysis of semilinear operators can be reduced to - linear - operator theory) to a revisit of applications of nuclear and absolutely $p$-summing operators in algebraic quantum field theory in the sense of Araki, Haag and Kastler ($p=2$) and more recently in the framework of general probabilistic spaces ($p=1$), we will outline that Banach operator ideals in the sense of Pietsch, or equivalently tensor products of Banach spaces in the sense of Grothendieck are even lurking in the foundations and philosophy of quantum physics and quantum information theory. In particular, we concentrate on their importance in algebraic quantum field theory. In doing so, we establish a canonical isometric isomorphism between the Hilbert spaces $H\otimes_2 (K \otimes_2 L)$ and $(H \otimes_2 K) \otimes_2 L$ (Theorem 3.8) and revisit the role of trace class operators. A few applications are specified, including the appropriateness of the class of Hilbert-Schmidt operators and an implied Banach operator ideal representation of the tensor product of two complex Hilbert spaces $H \otimes_2 K$ (Proposition 3.4) and a purely linear algebraic description of the quantum teleportation process (Example 3.10).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com