Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem (2404.16001v1)

Published 24 Apr 2024 in quant-ph

Abstract: According to the adiabatic theorem of quantum mechanics, a system initially in the ground state of a Hamiltonian remains in the ground state if one slowly changes the Hamiltonian. This can be used in principle to solve hard problems on quantum computers. Generically, however, implementation of this Hamiltonian dynamics on digital quantum computers requires scaling Trotter step size with system size and simulation time, which incurs a large gate count. In this work, we argue that for classical optimization problems, the adiabatic evolution can be performed with a fixed, finite Trotter step. This "Floquet adiabatic evolution" reduces by several orders of magnitude the gate count compared to the usual, continuous-time adiabatic evolution. We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem on $3$-regular graphs in a large number of instances, with surprisingly low runtime, even with bond dimensions as low as $D=2$. Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers for this specific problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. S. Leontica and D. Amaro, Physical Review Research 6, 013071 (2024).
  2. W. W. Ho and D. A. Abanin, arXiv preprint arXiv:1611.05024  (2016), 10.48550/arXiv.1611.05024.
  3. H. R. Lewis, The Journal of Symbolic Logic 48, 498 (1983).
  4. J. Håstad, Journal of the ACM (JACM) 48, 798 (2001).
  5. A. Kügel, Pos@ sat 8, 15 (2010).
  6. M. X. Goemans and D. P. Williamson, Journal of the ACM (JACM) 42, 1115 (1995).
  7. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”  (2023).
  8. S. Lloyd, Science 273, 1073 (1996).
  9. M. Suzuki, Journal of Mathematical Physics 32, 400 (1991).
  10. C. Yi, Physical Review A 104, 052603 (2021).
  11. E. Granet and H. Dreyer, arXiv preprint arXiv:2308.03694  (2023), 10.48550/arXiv.2308.03694.
  12. T. Albash and D. A. Lidar, Physical Review X 8, 031016 (2018).
  13. C. M. Keever and M. Lubasch, arXiv preprint arXiv:2311.05544  (2023), 10.48550/arXiv.2311.05544.
  14. M. Suzuki, Physics Letters A 146, 319 (1990).
  15. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,”  (2023).
  16. G. G. Guerreschi and A. Y. Matsuura, Scientific reports 9, 6903 (2019).
  17. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  18. Fermioniq B.V., “Fermioniq,”  (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com