Beyond Quantum Annealing: Optimal control solutions to MaxCut problems (2405.08630v1)
Abstract: Quantum Annealing (QA) relies on mixing two Hamiltonian terms, a simple driver and a complex problem Hamiltonian, in a linear combination. The time-dependent schedule for this mixing is often taken to be linear in time: improving on this linear choice is known to be essential and has proven to be difficult. Here, we present different techniques for improving on the linear-schedule QA along two directions, conceptually distinct but leading to similar outcomes: 1) the first approach consists of constructing a Trotter-digitized QA (dQA) with schedules parameterized in terms of Fourier modes or Chebyshev polynomials, inspired by the Chopped Random Basis algorithm (CRAB) for optimal control in continuous time; 2) the second approach is technically a Quantum Approximate Optimization Algorithm (QAOA), whose solutions are found iteratively using linear interpolation or expansion in Fourier modes. Both approaches emphasize finding smooth optimal schedule parameters, ultimately leading to hybrid quantum-classical variational algorithms of the alternating Hamiltonian Ansatz type. We apply these techniques to MaxCut problems on weighted 3-regular graphs with N = 14 sites, focusing on hard instances that exhibit a small spectral gap, for which a standard linear-schedule QA performs poorly. We characterize the physics behind the optimal protocols for both the dQA and QAOA approaches, discovering shortcuts to adiabaticity-like dynamics. Furthermore, we study the transferability of such smooth solutions among hard instances of MaxCut at different circuit depths. Finally, we show that the smoothness pattern of these protocols obtained in a digital setting enables us to adapt them to continuous-time evolution, contrarily to generic non-smooth solutions. This procedure results in an optimized quantum annealing schedule that is implementable on analog devices.
- J. Preskill, “Quantum computing 40 years later,” (2023), arXiv:2106.10522 [quant-ph] .
- A. Lucas, Frontiers in Physics 2 (2014), 10.3389/fphy.2014.00005.
- G. G. Guerreschi and A. Y. Matsuura, Scientific Reports 9, 6903 (2019), number: 1 Publisher: Nature Publishing Group.
- J. Preskill, Quantum 2, 79 (2018).
- G. E. Santoro and E. Tosatti, Journal of Physics A: Mathematical and General 39, R393 (2006).
- T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018).
- L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
- C. Zalka, Phys. Rev. A 60, 2746 (1999).
- J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).
- C. Zener, Proc. Royal Soc. A 137, 696 (1932).
- S. Knysh, Nature Communications 7, 12370 (2016).
- D. D’Alessandro, Introduction to quantum control and dynamics (Chapman and Hall/CRC, 2007).
- M. Demirplak and S. A. Rice, The Journal of Physical Chemistry A 107, 9937 (2003).
- M. V. Berry, Journal of Physics A: Mathematical and Theoretical 42, 365303 (2009).
- Y. Susa and H. Nishimori, Phys. Rev. A 103, 022619 (2021).
- N. Barraza, G. A. Barrios, I. Montalban, E. Solano, and F. Albarrán-Arriagada, “Variational coherent quantum annealing,” (2023), arXiv:2310.02248 [quant-ph] .
- B. Seoane and H. Nishimori, Journal of Physics A: Mathematical and Theoretical 45, 435301 (2012).
- G. Quiroz, Phys. Rev. A 99, 062306 (2019).
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” (2014), arXiv:1411.4028 [quant-ph] .
- M. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- S. Lloyd, “Quantum approximate optimization is computationally universal,” (2018), arXiv:1812.11075 [quant-ph] .
- M. Cerezo, M. Larocca, D. García-Martín, N. L. Diaz, P. Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A. Ijaz, S. Thanasilp, E. R. Anschuetz, and Z. Holmes, “Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing,” (2023), arXiv:2312.09121 [quant-ph] .
- L. Bittel and M. Kliesch, Phys. Rev. Lett. 127, 120502 (2021).
- M. Ragone, B. N. Bakalov, F. Sauvage, A. F. Kemper, C. O. Marrero, M. Larocca, and M. Cerezo, “A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits,” (2023), arXiv:2309.09342 [quant-ph] .
- E. Fontana, D. Herman, S. Chakrabarti, N. Kumar, R. Yalovetzky, J. Heredge, S. H. Sureshbabu, and M. Pistoia, “The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ansätze,” (2023), arXiv:2309.07902 [quant-ph] .
- J. Dborin, F. Barratt, V. Wimalaweera, L. Wright, and A. G. Green, “Matrix product state pre-training for quantum machine learning,” (2021), arXiv:2106.05742 [quant-ph] .
- M. Kliesch and I. Roth, PRX Quantum 2 (2021), 10.1103/prxquantum.2.010201.
- S. H. Sack, R. A. Medina, A. A. Michailidis, R. Kueng, and M. Serbyn, “Avoiding barren plateaus using classical shadows,” (2022), arXiv:2201.08194 [quant-ph] .
- L. Broers and L. Mathey, Phys. Rev. Res. 6, 013076 (2024).
- S. H. Sack and M. Serbyn, Quantum 5, 491 (2021).
- J. Wurtz and P. J. Love, Quantum 6, 635 (2022a).
- M. W. Johnson et al., Nature 473, 194 (2011).
- S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
- R. J. Duffin and E. L. Peterson, Journal of Optimization Theory and Applications 11, 3 (1973).
- C. D. Maranas and C. A. Floudas, Computers & Chemical Engineering 21, 351 (1997).
- E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou, “The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick model at infinite size,” (2020), arXiv:1910.08187 [quant-ph] .
- J. Wurtz and P. J. Love, Quantum 6, 635 (2022b).
- G. E. Crooks, “Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem,” (2018), arXiv:1811.08419 [quant-ph] .
- L. T. Brady, L. Kocia, P. Bienias, A. Bapat, Y. Kharkov, and A. V. Gorshkov, “Behavior of analog quantum algorithms,” (2021), arXiv:2107.01218 [quant-ph] .
- F. G. S. L. Brandao, M. Broughton, E. Farhi, S. Gutmann, and H. Neven, “For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances,” (2018), arXiv:1812.04170 [quant-ph] .
- A. H. Al-Mohy and N. J. Higham, SIAM Journal on Scientific Computing 33, 488 (2011), https://doi.org/10.1137/100788860 .