Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Gravitational Faraday and spin-Hall effects of light: Local description (2404.15934v1)

Published 24 Apr 2024 in gr-qc

Abstract: A gravitational field can cause a rotation of the polarisation plane of light. This phenomenon is known as the gravitational Faraday effect. It arises due to different spin-orbit interaction of left- and right-handed circularly polarised components of light. Such an interaction also causes transverse displacement in the light trajectory, in opposite directions for each component. This phenomenon is known as the gravitational spin-Hall effect of light. We study these effects in a local inertial frame in arbitrary vacuum space-time and show that they are observer dependent and arise due to interaction of light polarisation with a local gravitomagnetic field measured by observer. Thus, to address the effects to a gravitational field alone, one has to consider zero angular momentum observers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Volker Perlick and Oleg Yu. Tsupko, “Calculating black hole shadows: Review of analytical studies,” Phys. Rept. 947, 1–39 (2022), arXiv:2105.07101 [gr-qc] .
  2. Gennady S. Bisnovatyi-Kogan and Oleg Yu. Tsupko, “Analytical study of higher-order ring images of the accretion disk around a black hole,” Phys. Rev. D 105, 064040 (2022), arXiv:2201.01716 [gr-qc] .
  3. Oleg Yu. Tsupko, “Shape of higher-order images of equatorial emission rings around a Schwarzschild black hole: Analytical description with polar curves,” Phys. Rev. D 106, 064033 (2022), arXiv:2208.02084 [gr-qc] .
  4. Fabio Aratore, Oleg Yu. Tsupko,  and Volker Perlick, “Constraining spherically symmetric metrics by the gap between photon rings,”   (2024), arXiv:2402.14733 [gr-qc] .
  5. G. V. Skrotskii, “On the Influence of Gravity on the Light Propagation,” Soviet Phys. Doklady 2, 226 (1957), [Akademia Nauk SSR, Doklady, 114, 73, 1957].
  6. J. Plebanski, “Electromagnetic Waves in Gravitational Fields,” Phys. Rev. 118, 1396 (1959).
  7. B. B. Godfrey, “Mach’s Principle, the Kerr Metric, and Black-Hole Physics,” Phys. Rev. D 1, 2721 (1970).
  8. S. Pineault and R. C. Roeder, “Applications of Geometrical Optics to the Kerr Metric. I. Analytical Results,” Astrophys. J. 212, 541 (1977).
  9. P. A. Connors and R. F. Stark, “Observable gravitational effects on polarised radiation coming from near a black hole,” Nature (London) 269, 128 (1977).
  10. P. A. Connors, T. Piran,  and R. F. Stark, “Polarization features of X-ray radiation emitted near black holes,” Astrophys. J. 235, 224 (1980).
  11. F. Fayos and J. Llosa, “Gravitational Effects on the Polarization Plane,” General Relativity and Gravitation 14, 865 (1982).
  12. H. Ishihara, M. Takahashi,  and A. Tomimatsu, “Gravitational Faraday rotation induced by a Kerr black hole,” Phys. Rev. D 38, 472 (1988).
  13. P. Carini, L. L. Feng, M. Li,  and R. Ruffini, “Phase evolution of the photon in Kerr spacetime,” Phys. Rev. D 46, 5407 (1992).
  14. V. Perlick and W. Hasse, “Gravitational Faraday effect in conformally stationary spacetimes,” Classical and Quantum Gravity 10, 147–161 (1993).
  15. M. Nouri-Zonoz, ‘‘Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary space-times,” Phys. Rev. D 60, 024013 (1999).
  16. M. Sereno, “Gravitational Faraday rotation in a weak gravitational field,” Phys. Rev. D 69, 087501 (2004).
  17. M. Sereno, “Detecting gravitomagnetism with rotation of polarization by a gravitational lens,” Mon. Not. R. Astron. Soc. 356, 381 (2005).
  18. Mustafa Halilsoy and Ozay Gurtug, “Search for gravitational waves through the electromagnetic Faraday rotation,” Phys. Rev. D 75, 124021 (2007), arXiv:gr-qc/0612107 .
  19. A. Brodutch, T. F. Demarie,  and D. R. Terno, “Photon polarization and geometric phase in general relativity,” Phys. Rev. D 84, 104043 (2011).
  20. Valeri P. Frolov and Andrey A. Shoom, “Spinoptics in a stationary spacetime,” Phys. Rev. D 84, 044026 (2011), arXiv:1105.5629 [gr-qc] .
  21. T. Ghosh and A. K. Sen, “The Effect of Gravitation on the Polarization State of a Light ray,” Astrophys. J. 833, 82 (2016).
  22. B. Mashhoon, “Scattering of Electromagnetic Radiation from a Black Hole,” Phys. Rev. D 7, 280 (1973).
  23. B. Mashhoon, ‘‘Electromagnetic scattering from a black hole and the glory effect,” Phys. Rev. D 10, 1059 (1974a).
  24. B. Mashhoon, “Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit?” Nature (London) 250, 316 (1974b).
  25. Bahram Mashhoon, “Influence of Gravitation on the Propagation of Electromagnetic Radiation,” Phys. Rev. D 11, 2679–2684 (1975).
  26. Valeri P. Frolov and Andrey A. Shoom, ‘‘Scattering of circularly polarized light by a rotating black hole,” Phys. Rev. D 86, 024010 (2012), arXiv:1205.4479 [gr-qc] .
  27. C. M. Yoo, “Notes on Spinoptics in a Stationary Spacetime,” Phys. Rev. D 86, 084005 (2012).
  28. Sam R. Dolan, “Higher-order geometrical optics for electromagnetic waves on a curved spacetime,”   (2018), arXiv:1801.02273 [gr-qc] .
  29. M. A. Oancea, J. Joudioux, I. Y. Dodin, D. E. Ruiz, C. F. Paganini,  and L. Andersson, “The gravitational spin Hall effect of light,” Phys. Rev. D 102, 024075 (2020).
  30. Valeri P. Frolov, “Maxwell equations in a curved spacetime: Spin optics approximation,” Phys. Rev. D 102, 084013 (2020), arXiv:2007.03743 [gr-qc] .
  31. F. K. Manasse and C. W. Misner, “Fermi Normal Coordinates and Some Basic Concepts in Differential Geometry,” J. Math. Phys. 4, 735 (1963).
  32. WannQuan Li and WeiTou Ni, “Expansions of the affinity, metric and geodesic equations in Fermi normal coordinates about a geodesic,” Journal of Mathematical Physics 20, 1925–1929 (1979).
  33. A. D. Dolgov and I. B. Khriplovich, “Normal Coordinates Along a Geodesic,” General Relativity and Gravitation 15, 1033–1041 (1983).
  34. Richard H. Price and Kip S. Thorne, “Membrane viewpoint on black holes: Properties and evolution of the stretched horizon,” Phys. Rev. D 33, 915–941 (1986).
  35. Bahram Mashhoon, Frank Gronwald,  and Herbert I. M. Lichtenegger, “Gravitomagnetism and the clock effect,” Lect. Notes Phys. 562, 83–108 (2001), arXiv:gr-qc/9912027 .
  36. J-A. Marck, “Solution to the equations of parallel transport in Kerr geometry; tidal tensor,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 385, 431–438 (1983).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com