Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unitary Synthesis of Clifford+T Circuits with Reinforcement Learning (2404.14865v4)

Published 23 Apr 2024 in quant-ph

Abstract: This paper presents a deep reinforcement learning approach for synthesizing unitaries into quantum circuits. Unitary synthesis aims to identify a quantum circuit that represents a given unitary while minimizing circuit depth, total gate count, a specific gate count, or a combination of these factors. While past research has focused predominantly on continuous gate sets, synthesizing unitaries from the parameter-free Clifford+T gate set remains a challenge. Although the time complexity of this task will inevitably remain exponential in the number of qubits for general unitaries, reducing the runtime for simple problem instances still poses a significant challenge. In this study, we apply the tree-search method Gumbel AlphaZero to solve the problem for a subset of exactly synthesizable Clifford+T unitaries. Our method effectively synthesizes circuits for up to five qubits generated from randomized circuits with up to 60 gates, outperforming existing tools like QuantumCircuitOpt and MIN-T-SYNTH in terms of synthesis time for larger qubit counts. Furthermore, it surpasses Synthetiq in successfully synthesizing random, exactly synthesizable unitaries. These results establish a strong baseline for future unitary synthesis algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.