Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesizing Toffoli-optimal quantum circuits for arbitrary multi-qubit unitaries (2401.08950v1)

Published 17 Jan 2024 in quant-ph

Abstract: In this paper we study the Clifford+Toffoli universal fault-tolerant gate set. We introduce a generating set in order to represent any unitary implementable by this gate set and with this we derive a bound on the Toffoli-count of arbitrary multi-qubit unitaries. We analyse the channel representation of the generating set elements, with the help of which we infer $|\mathcal{J}_n{Tof}|<|\mathcal{J}_nT|$, where $\mathcal{J}_n{Tof}$ and $\mathcal{J}_nT$ are the set of unitaries exactly implementable by the Clifford+Toffoli and Clifford+T gate set, respectively. We develop Toffoli-count optimal synthesis algorithms for both approximately and exactly implementable multi-qubit unitaries. With the help of these we prove $|\mathcal{J}_n{Tof}|=|\mathcal{J}_n{CS}|$, where $\mathcal{J}_n{CS}$ is the set of unitaries exactly implementable by the Clifford+CS gate set.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Daniel Gottesman. The Heisenberg representation of quantum computers, talk at. In International Conference on Group Theoretic Methods in Physics. Citeseer, 1998.
  2. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
  3. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.
  4. Quantum teleportation is a universal computational primitive. arXiv preprint quant-ph/9908010, 1999.
  5. Improved classical simulation of quantum circuits dominated by Clifford gates. Physical Review Letters, 116(25):250501, 2016.
  6. Trading classical and quantum computational resources. Physical Review X, 6(2):021043, 2016.
  7. Aleksei Yur’evich Kitaev. Quantum computations: algorithms and error correction. Uspekhi Matematicheskikh Nauk, 52(6):53–112, 1997.
  8. CM Dawson and MA Nielsen. The Solovay-Kitaev algorithm. Quantum Information and Computation, 6(1):81–95, 2006.
  9. Neil J Ross. Optimal ancilla-free Clifford+V approximation of Z-rotations. Quantum Information & Computation, 15(11-12):932–950, 2015.
  10. Optimal ancilla-free Clifford+T approximation of Z-rotations. Quantum Information & Computation, 16(11-12):901–953, 2016.
  11. Efficient decomposition of single-qubit gates into V basis circuits. Physical Review A, 88(1):012313, 2013.
  12. Optimal ancilla-free Pauli+V circuits for axial rotations. Journal of Mathematical Physics, 56(12):122201, 2015.
  13. Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Transactions on Computers, 65(1):161–172, 2015.
  14. Priyanka Mukhopadhyay. Composability of global phase invariant distance and its application to approximation error management. Journal of Physics Communications, 5(11):115017, 2021.
  15. T-count and T-depth of any multi-qubit unitary. npj Quantum Information, 8(1):141, 2022.
  16. Asymptotically optimal topological quantum compiling. Physical Review Letters, 112(14):140504, 2014.
  17. Fibonacci anyons versus Majorana fermions: A Monte Carlo approach to the compilation of braid circuits in S⁢U⁢(2)k𝑆𝑈subscript2𝑘SU(2)_{k}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT anyon models. PRX Quantum, 2(1):010334, 2021.
  18. Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum universal. arXiv preprint quant-ph/0301040, 2003.
  19. Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Information & Computation, 3(1):84–92, 2003.
  20. Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4:252, 2020.
  21. Renaud Vilmart. A ZX-calculus with triangles for Toffoli-Hadamard, Clifford+T, and beyond. arXiv preprint arXiv:1804.03084, 2018.
  22. Renaud Vilmart. Rewriting and Completeness of Sum-Over-Paths in Dyadic Fragments of Quantum Computing. arXiv preprint arXiv:2307.14223, 2023.
  23. The Toffoli-Hadamard gate system: an algebraic approach. Journal of philosophical logic, 42:467–481, 2013.
  24. Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv preprint quant-ph/9705052, 1997.
  25. Experimental quantum error correction. Physical Review Letters, 81(10):2152, 1998.
  26. Implementation of a Toffoli gate with superconducting circuits. Nature, 481(7380):170–172, 2012.
  27. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382–385, 2012.
  28. Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A, 87(2):022328, 2013.
  29. Cody Jones. Composite Toffoli gate with two-round error detection. Physical Review A, 87(5):052334, 2013.
  30. Universal fault-tolerant quantum computation with only transversal gates and error correction. Physical Review Letters, 111(9):090505, 2013.
  31. Theodore J Yoder. Universal fault-tolerant quantum computation with Bacon-Shor codes. arXiv preprint arXiv:1705.01686, 2017.
  32. Distillation with sublogarithmic overhead. Physical Review Letters, 120(5):050504, 2018.
  33. Techniques for fault-tolerant decomposition of a multicontrolled Toffoli gate. Physical Review A, 100(6):062326, 2019.
  34. Lower bounds on the non-Clifford resources for quantum computations. Quantum Science and Technology, 5(3):035009, 2020.
  35. Quantum simulation of the first-quantized Pauli-Fierz hamiltonian. arXiv preprint arXiv:2306.11198, 2023.
  36. Synthesizing efficient circuits for Hamiltonian simulation. npj Quantum Information, 9(1):31, 2023.
  37. Elementary quantum gate realizations for multiple-control Toffoli gates. In 2011 41st IEEE International Symposium on Multiple-Valued Logic, pages 288–293. IEEE, 2011.
  38. HR Bhagyalakshmi and MK Venkatesha. Optimized multiplier using reversible multi-control input Toffoli gates. International Journal of VLSI Design & Communication Systems, 3(6):27, 2012.
  39. Circuit decomposition of multi-controlled special unitary single-qubit gates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.
  40. A novel design of reversible quantum multiplier based on multiple-control Toffoli synthesis. Quantum Information Processing, 22(4):167, 2023.
  41. Improved synthesis of Toffoli-Hadamard circuits. arXiv preprint arXiv:2305.11305, 2023.
  42. Optimized quantum gate library for various physical machine descriptions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(11):2055–2068, 2013.
  43. Automating the comparison of quantum compilers for quantum circuits. In Symposium and Summer School on Service-Oriented Computing, pages 64–80. Springer, 2021.
  44. Efficient discrete approximations of quantum gates. Journal of Mathematical Physics, 43(9):4445–4451, 2002.
  45. Optimal two-qubit circuits for universal fault-tolerant quantum computation. npj Quantum Information, 7(1):1–11, 2021.
  46. An algorithm for the T-count. Quantum Information & Computation, 14(15-16):1261–1276, 2014.
  47. A polynomial time and space heuristic algorithm for T-count. Quantum Science and Technology, 2021.
  48. A (quasi-) polynomial time heuristic algorithm for synthesizing T-depth optimal circuits. npj Quantum Information, 8(1):110, 2022.
  49. Exact synthesis of multiqubit Clifford+T circuits. Physical Review A, 87(3):032332, 2013.
  50. Classical and quantum computation. Number 47. American Mathematical Soc., 2002.
  51. Austin G Fowler. Constructing arbitrary Steane code single logical qubit fault-tolerant gates. Quantum Information & Computation, 11(9-10):867–873, 2011.
  52. Quantum circuits synthesis using Householder transformations. Computer Physics Communications, 248:107001, 2020.
  53. Quantum circuits for sparse isometries. Quantum, 5:412, 2021.
  54. Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information & Computation, 13(7-8):607–630, 2013.
  55. Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Physical Review Letters, 110(19):190502, 2013.
  56. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013.
  57. Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–1489, 2014.
  58. Ewout Van Den Berg and Kristan Temme. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of pauli clusters. Quantum, 4:322, 2020.
  59. C_3, semi-Clifford and genralized semi-Clifford operations. Quantum Information and Computation, 10(1-2):41–59, 2010.
  60. Efficient decomposition of quantum gates. Physical Review Letters, 92(17):177902, 2004.
  61. Universal quantum circuits for quantum chemistry. Quantum, 6:742, 2022.
  62. Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120(11):110501, 2018.
  63. Hartree-Fock on a superconducting qubit quantum computer. Science, 369(6507):1084–1089, 2020.
  64. Quantum machine learning with subspace states. arXiv preprint arXiv:2202.00054, 2022.
  65. Variational quantum algorithm for molecular geometry optimization. Physical Review A, 104(5):052402, 2021.
  66. François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 296–303. ACM, 2014.
  67. Improved simulation of stabilizer circuits. Physical Review A, 70(5):052328, 2004.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com