Synthesizing Toffoli-optimal quantum circuits for arbitrary multi-qubit unitaries (2401.08950v1)
Abstract: In this paper we study the Clifford+Toffoli universal fault-tolerant gate set. We introduce a generating set in order to represent any unitary implementable by this gate set and with this we derive a bound on the Toffoli-count of arbitrary multi-qubit unitaries. We analyse the channel representation of the generating set elements, with the help of which we infer $|\mathcal{J}_n{Tof}|<|\mathcal{J}_nT|$, where $\mathcal{J}_n{Tof}$ and $\mathcal{J}_nT$ are the set of unitaries exactly implementable by the Clifford+Toffoli and Clifford+T gate set, respectively. We develop Toffoli-count optimal synthesis algorithms for both approximately and exactly implementable multi-qubit unitaries. With the help of these we prove $|\mathcal{J}_n{Tof}|=|\mathcal{J}_n{CS}|$, where $\mathcal{J}_n{CS}$ is the set of unitaries exactly implementable by the Clifford+CS gate set.
- Daniel Gottesman. The Heisenberg representation of quantum computers, talk at. In International Conference on Group Theoretic Methods in Physics. Citeseer, 1998.
- Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.
- Quantum teleportation is a universal computational primitive. arXiv preprint quant-ph/9908010, 1999.
- Improved classical simulation of quantum circuits dominated by Clifford gates. Physical Review Letters, 116(25):250501, 2016.
- Trading classical and quantum computational resources. Physical Review X, 6(2):021043, 2016.
- Aleksei Yur’evich Kitaev. Quantum computations: algorithms and error correction. Uspekhi Matematicheskikh Nauk, 52(6):53–112, 1997.
- CM Dawson and MA Nielsen. The Solovay-Kitaev algorithm. Quantum Information and Computation, 6(1):81–95, 2006.
- Neil J Ross. Optimal ancilla-free Clifford+V approximation of Z-rotations. Quantum Information & Computation, 15(11-12):932–950, 2015.
- Optimal ancilla-free Clifford+T approximation of Z-rotations. Quantum Information & Computation, 16(11-12):901–953, 2016.
- Efficient decomposition of single-qubit gates into V basis circuits. Physical Review A, 88(1):012313, 2013.
- Optimal ancilla-free Pauli+V circuits for axial rotations. Journal of Mathematical Physics, 56(12):122201, 2015.
- Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Transactions on Computers, 65(1):161–172, 2015.
- Priyanka Mukhopadhyay. Composability of global phase invariant distance and its application to approximation error management. Journal of Physics Communications, 5(11):115017, 2021.
- T-count and T-depth of any multi-qubit unitary. npj Quantum Information, 8(1):141, 2022.
- Asymptotically optimal topological quantum compiling. Physical Review Letters, 112(14):140504, 2014.
- Fibonacci anyons versus Majorana fermions: A Monte Carlo approach to the compilation of braid circuits in SU(2)k𝑆𝑈subscript2𝑘SU(2)_{k}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT anyon models. PRX Quantum, 2(1):010334, 2021.
- Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum universal. arXiv preprint quant-ph/0301040, 2003.
- Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Information & Computation, 3(1):84–92, 2003.
- Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum, 4:252, 2020.
- Renaud Vilmart. A ZX-calculus with triangles for Toffoli-Hadamard, Clifford+T, and beyond. arXiv preprint arXiv:1804.03084, 2018.
- Renaud Vilmart. Rewriting and Completeness of Sum-Over-Paths in Dyadic Fragments of Quantum Computing. arXiv preprint arXiv:2307.14223, 2023.
- The Toffoli-Hadamard gate system: an algebraic approach. Journal of philosophical logic, 42:467–481, 2013.
- Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv preprint quant-ph/9705052, 1997.
- Experimental quantum error correction. Physical Review Letters, 81(10):2152, 1998.
- Implementation of a Toffoli gate with superconducting circuits. Nature, 481(7380):170–172, 2012.
- Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382–385, 2012.
- Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A, 87(2):022328, 2013.
- Cody Jones. Composite Toffoli gate with two-round error detection. Physical Review A, 87(5):052334, 2013.
- Universal fault-tolerant quantum computation with only transversal gates and error correction. Physical Review Letters, 111(9):090505, 2013.
- Theodore J Yoder. Universal fault-tolerant quantum computation with Bacon-Shor codes. arXiv preprint arXiv:1705.01686, 2017.
- Distillation with sublogarithmic overhead. Physical Review Letters, 120(5):050504, 2018.
- Techniques for fault-tolerant decomposition of a multicontrolled Toffoli gate. Physical Review A, 100(6):062326, 2019.
- Lower bounds on the non-Clifford resources for quantum computations. Quantum Science and Technology, 5(3):035009, 2020.
- Quantum simulation of the first-quantized Pauli-Fierz hamiltonian. arXiv preprint arXiv:2306.11198, 2023.
- Synthesizing efficient circuits for Hamiltonian simulation. npj Quantum Information, 9(1):31, 2023.
- Elementary quantum gate realizations for multiple-control Toffoli gates. In 2011 41st IEEE International Symposium on Multiple-Valued Logic, pages 288–293. IEEE, 2011.
- HR Bhagyalakshmi and MK Venkatesha. Optimized multiplier using reversible multi-control input Toffoli gates. International Journal of VLSI Design & Communication Systems, 3(6):27, 2012.
- Circuit decomposition of multi-controlled special unitary single-qubit gates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.
- A novel design of reversible quantum multiplier based on multiple-control Toffoli synthesis. Quantum Information Processing, 22(4):167, 2023.
- Improved synthesis of Toffoli-Hadamard circuits. arXiv preprint arXiv:2305.11305, 2023.
- Optimized quantum gate library for various physical machine descriptions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(11):2055–2068, 2013.
- Automating the comparison of quantum compilers for quantum circuits. In Symposium and Summer School on Service-Oriented Computing, pages 64–80. Springer, 2021.
- Efficient discrete approximations of quantum gates. Journal of Mathematical Physics, 43(9):4445–4451, 2002.
- Optimal two-qubit circuits for universal fault-tolerant quantum computation. npj Quantum Information, 7(1):1–11, 2021.
- An algorithm for the T-count. Quantum Information & Computation, 14(15-16):1261–1276, 2014.
- A polynomial time and space heuristic algorithm for T-count. Quantum Science and Technology, 2021.
- A (quasi-) polynomial time heuristic algorithm for synthesizing T-depth optimal circuits. npj Quantum Information, 8(1):110, 2022.
- Exact synthesis of multiqubit Clifford+T circuits. Physical Review A, 87(3):032332, 2013.
- Classical and quantum computation. Number 47. American Mathematical Soc., 2002.
- Austin G Fowler. Constructing arbitrary Steane code single logical qubit fault-tolerant gates. Quantum Information & Computation, 11(9-10):867–873, 2011.
- Quantum circuits synthesis using Householder transformations. Computer Physics Communications, 248:107001, 2020.
- Quantum circuits for sparse isometries. Quantum, 5:412, 2021.
- Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information & Computation, 13(7-8):607–630, 2013.
- Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Physical Review Letters, 110(19):190502, 2013.
- A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013.
- Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–1489, 2014.
- Ewout Van Den Berg and Kristan Temme. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of pauli clusters. Quantum, 4:322, 2020.
- C_3, semi-Clifford and genralized semi-Clifford operations. Quantum Information and Computation, 10(1-2):41–59, 2010.
- Efficient decomposition of quantum gates. Physical Review Letters, 92(17):177902, 2004.
- Universal quantum circuits for quantum chemistry. Quantum, 6:742, 2022.
- Quantum simulation of electronic structure with linear depth and connectivity. Physical Review Letters, 120(11):110501, 2018.
- Hartree-Fock on a superconducting qubit quantum computer. Science, 369(6507):1084–1089, 2020.
- Quantum machine learning with subspace states. arXiv preprint arXiv:2202.00054, 2022.
- Variational quantum algorithm for molecular geometry optimization. Physical Review A, 104(5):052402, 2021.
- François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 296–303. ACM, 2014.
- Improved simulation of stabilizer circuits. Physical Review A, 70(5):052328, 2004.