Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

The coproduct for the affine Yangian and the parabolic induction for non-rectangular $W$-algebras (2404.14096v5)

Published 22 Apr 2024 in math.RA, math-ph, math.MP, and math.QA

Abstract: By using the coproduct and evaluation map for the affine Yangian and the Miura map for non-rectangular $W$-algebras, we construct a homomorphism from the affine Yangian associated with $\widehat{\mathfrak{sl}}(n)$ to the universal enveloping algebra of a non-rectangular $W$-algebra of type $A$, which is an affine analogue of the one given in De Sole-Kac-Valeri. As a consequence, we find that the coproduct for the affine Yangian is compatible with some of the parabolic induction for non-rectangular $W$-algebras via this homomorphism. We also show that the image of this homomorphism is contained in the affine coset of the $W$-algebra in the special case that the $W$-algebra is associated with a nilpotent element of type $(1{m-n},2n)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. T. Arakawa. Representation theory of W𝑊Witalic_W-algebras. Invent. Math., 169(2):219–320, 2007, https://doi.org/10.1007/s00222-007-0046-1.
  2. J. Brundan and A. Kleshchev. Shifted Yangians and finite W𝑊Witalic_W-algebras. Adv. Math., 200(1):136–195, 2006, https://doi.org/10.1016/j.aim.2004.11.004.
  3. Affine Laumon spaces and iterated 𝒲𝒲{\cal W}caligraphic_W-algebras. Comm. Math. Phys., 402(3):2133–2168, 2023.
  4. T. Creutzig and A. R. Linshaw. Trialities of 𝒲𝒲\mathcal{W}caligraphic_W-algebras. Camb. J. Math., 10(1):69–194, 2022.
  5. A. De Sole and V. G. Kac. Finite vs affine W𝑊Witalic_W-algebras. Jpn. J. Math., 1(1):137–261, 2006, https://doi.org/10.1007/s11537-006-0505-2.
  6. A Lax type operator for quantum finite W𝑊Witalic_W-algebras. Selecta Math. (N.S.), 24(5):4617–4657, 2018.
  7. V. G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR, 283(5):1060–1064, 1985, https://doi.org/10.1142/9789812798336.0013.
  8. V. G. Drinfeld. A new realization of Yangians and of quantum affine algebras. Dokl. Akad. Nauk SSSR, 296(1):13–17, 1987.
  9. M. Finkelberg and A. Tsymbaliuk. Multiplicative slices, relativistic Toda and shifted quantum affine algebras. In Representations and nilpotent orbits of Lie algebraic systems, volume 330 of Progr. Math., pages 133–304. Birkhäuser/Springer, Cham, 2019.
  10. I. B. Frenkel and Y. Zhu. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J., 66(1):123–168, 1992, https://doi.org/10.1215/S0012-7094-92-06604-X.
  11. D. Gaiotto and M. Rapčák. Vertex algebras at the corner. J. High Energy Phys., (1):160, front matter+85, 2019.
  12. N. Genra. Screening operators for 𝒲𝒲\mathcal{W}caligraphic_W-algebras. Selecta Math. (N.S.), 23(3):2157–2202, 2017, https://doi.org/10.1007/s00029-017-0315-9.
  13. N. Genra. Screening operators and parabolic inductions for affine 𝒲𝒲{\cal W}caligraphic_W-algebras. Adv. Math., 369:107179, 62, 2020, https://doi.org/10.1016/j.aim.2020.107179.
  14. N. Guay. Cherednik algebras and Yangians. Int. Math. Res. Not., (57):3551–3593, 2005, https://doi.org/10.1155/IMRN.2005.3551.
  15. N. Guay. Affine Yangians and deformed double current algebras in type A. Adv. Math., 211(2):436–484, https://doi.org/10.1016/j.aim.2006.08.007, 2007.
  16. Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math., 338:865–911, 2018, https://doi.org/10.1016/j.aim.2018.09.013.
  17. V. G. Kac and M. Wakimoto. Quantum reduction and representation theory of superconformal algebras. Adv. Math., 185(2):400–458, 2004, https://doi.org/10.1016/j.aim.2003.12.005.
  18. R. Kodera. Braid group action on affine Yangian. SIGMA Symmetry Integrability Geom. Methods Appl., 15:Paper No. 020, 28, 2019, https://doi.org/10.3842/SIGMA.2019.020.
  19. R. Kodera. On Guay’s evaluation map for affine Yangians. Algebr. Represent. Theory, 24(1):253–267, 2021, https://doi.org/10.1007/s10468-019-09945-w.
  20. R. Kodera and M. Ueda. Coproduct for affine Yangians and parabolic induction for rectangular W𝑊Witalic_W-algebras. Lett. Math. Phys., 112(1):Paper No. 3, 37, 2022.
  21. Quasi-finite algebras graded by Hamiltonian and vertex operator algebras. London Math. Soc. Lecture Note Ser., 372:282–329, 2010, https://doi.org/10.1017/CBO9780511730054.015.
  22. A. Premet. Special transverse slices and their enveloping algebras. Adv. Math., 170(1):1–55, 2002, https://doi.org/10.1006/aima.2001.2063. With an appendix by Serge Skryabin.
  23. O. Schiffmann and E. Vasserot. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on 𝔸2superscript𝔸2\mathbb{A}^{2}blackboard_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Publ. Math. Inst. Hautes Études Sci., 118:213–342, 2013, https://doi.org/10.1007/s10240-013-0052-3.
  24. M. Ueda. An Example of Homomorphisms from the Guay’s affine Yangians to non-rectangular W𝑊Witalic_W-algebras. Transformation Groups(2023).
  25. M. Ueda. A homomorphism from the affine Yangian Yℏ,ε⁢(𝔰⁢𝔩^⁢(n))subscript𝑌Planck-constant-over-2-pi𝜀^𝔰𝔩𝑛Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n))italic_Y start_POSTSUBSCRIPT roman_ℏ , italic_ε end_POSTSUBSCRIPT ( over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n ) ) to the affine Yangian Yℏ,ε⁢(𝔰⁢𝔩^⁢(n+1))subscript𝑌Planck-constant-over-2-pi𝜀^𝔰𝔩𝑛1Y_{\hbar,\varepsilon}(\widehat{\mathfrak{sl}}(n+1))italic_Y start_POSTSUBSCRIPT roman_ℏ , italic_ε end_POSTSUBSCRIPT ( over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n + 1 ) ). arXiv:2312.09933.
  26. M. Ueda. Notes on a homomorphism from the affine Yangian associated with 𝔰⁢𝔩^⁢(n)^𝔰𝔩𝑛\widehat{\mathfrak{sl}}(n)over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n ) to the affine Yangian associated with 𝔰⁢𝔩^⁢(n)^𝔰𝔩𝑛\widehat{\mathfrak{sl}}(n)over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n ). arXiv:2402.01870.
  27. M. Ueda. Two homomorphisms from the affine Yangian associated with 𝔰⁢𝔩^⁢(n)^𝔰𝔩𝑛\widehat{\mathfrak{sl}}(n)over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n ) to the affine Yangian associated with 𝔰⁢𝔩^⁢(n)^𝔰𝔩𝑛\widehat{\mathfrak{sl}}(n)over^ start_ARG fraktur_s fraktur_l end_ARG ( italic_n ). arXiv:2404.10923.
  28. M. Ueda. Affine super Yangians and rectangular W𝑊Witalic_W-superalgebras. J. Math. Phys., 63(5):Paper No. 051701, 34, 2022.
  29. M. Ueda. Guay’s affine Yangians and non-rectangular W𝑊Witalic_W-algebras. Adv. Math., 438:Paper No. 109468, 44, 2024.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com