Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local univalence versus stability and causality in hydrodynamic models (2404.14091v1)

Published 22 Apr 2024 in hep-ph, hep-th, math-ph, math.MP, and nucl-th

Abstract: Our main objective is to compare the analytic properties of hydrodynamic series with the stability and causality conditions applied to hydrodynamic modes. Analyticity, in this context, implies that the hydrodynamic series behaves as a univalent or single-valued function. Stability and causality adhere to physical constraints where hydrodynamic modes neither exhibit exponential growth nor travel faster than the speed of light. Through an examination of various hydrodynamic models, such as the Muller-Israel-Stewart (MIS) and the first-order hydro models like the BDNK (Bemfica-Disconzi-Noronha-Kovtun) model, we observe no new restrictions stemming from the analyticity limits in the shear channel of these models. However, local univalence is maintained in the sound channel of these models despite the global divergence of the hydrodynamic series. Notably, differences in the sound equations between the MIS and BDNK models lead to distinct analyticity limits. The MIS model's sound mode remains univalent at high momenta within a specific transport range. Conversely, in the BDNK model, the univalence of the sound mode extends to intermediate momenta across all stable and causal regions. Generally, the convergence radius is independent of univalence and the given dispersion relation predominantly influences their correlation. For second-order frequency dispersions, the relationship is precise, i.e. within the convergence radius, the hydro series demonstrates univalence. However, with higher-order dispersions, the hydro series is locally univalent within certain transport regions, which may fall within or outside the stable and causal zones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. D. H. Rischke, “The Quark gluon plasma in equilibrium,” Prog. Part. Nucl. Phys. 52 (2004) 197–296, nucl-th/0305030.
  2. E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen, “Evidence for quark-matter cores in massive neutron stars,” Nature Phys. 16 (2020), no. 9, 907–910, 1903.09121.
  3. E. V. Shuryak, “What RHIC experiments and theory tell us about properties of quark-gluon plasma?,” Nucl. Phys. A 750 (2005) 64–83, hep-ph/0405066.
  4. E. Shuryak, “Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?,” Prog. Part. Nucl. Phys. 53 (2004) 273–303, hep-ph/0312227.
  5. W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions,” Ann. Rev. Nucl. Part. Sci. 68 (2018) 339–376, 1802.04801.
  6. U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions,” Ann. Rev. Nucl. Part. Sci. 63 (2013) 123–151, 1301.2826.
  7. D. Teaney, J. Lauret, and E. V. Shuryak, “Flow at the SPS and RHIC as a quark gluon plasma signature,” Phys. Rev. Lett. 86 (2001) 4783–4786, nucl-th/0011058.
  8. M. P. Heller and M. Spaliński, “Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation,” Phys. Rev. Lett. 115 (2015), no. 7, 072501, 1503.07514.
  9. M. P. Heller, A. Kurkela, M. Spaliński, and V. Svensson, “Hydrodynamization in kinetic theory: Transient modes and the gradient expansion,” Phys. Rev. D97 (2018), no. 9, 091503, 1609.04803.
  10. M. P. Heller and V. Svensson, “How does relativistic kinetic theory remember about initial conditions?,” Phys. Rev. D 98 (2018), no. 5, 054016, 1802.08225.
  11. P. Romatschke, “Relativistic Fluid Dynamics Far From Local Equilibrium,” Phys. Rev. Lett. 120 (2018), no. 1, 012301, 1704.08699.
  12. J. Noronha-Hostler, J. Noronha, and M. Gyulassy, “The unreasonable effectiveness of hydrodynamics in heavy ion collisions,” Nucl. Phys. A 956 (2016) 890–893, 1512.07135.
  13. W. A. Hiscock and L. Lindblom, “Stability and causality in dissipative relativistic fluids,” Annals Phys. 151 (1983) 466–496.
  14. S. Pu, T. Koide, and D. H. Rischke, “Does stability of relativistic dissipative fluid dynamics imply causality?,” Phys. Rev. D 81 (2010) 114039, 0907.3906.
  15. L. Gavassino, M. M. Disconzi, and J. Noronha, “Dispersion Relations Alone Cannot Guarantee Causality,” Phys. Rev. Lett. 132 (2024), no. 16, 162301, 2307.05987.
  16. D.-L. Wang and S. Pu, “Stability and causality criteria in linear mode analysis: Stability means causality,” Phys. Rev. D 109 (2024), no. 3, L031504, 2309.11708.
  17. R. E. Hoult and P. Kovtun, “Causality and classical dispersion relations,” Phys. Rev. D 109 (2024), no. 4, 046018, 2309.11703.
  18. N. Mullins, M. Hippert, L. Gavassino, and J. Noronha, “Relativistic hydrodynamic fluctuations from an effective action: Causality, stability, and the information current,” Phys. Rev. D 108 (2023), no. 11, 116019, 2309.00512.
  19. L. Gavassino, M. M. Disconzi, and J. Noronha, “Universality Classes of Relativistic Fluid Dynamics I: Foundations,” 2302.03478.
  20. L. Gavassino, M. M. Disconzi, and J. Noronha, “Universality Classes of Relativistic Fluid Dynamics II: Applications,” 2302.05332.
  21. S. Grozdanov, P. K. Kovtun, A. O. Starinets, and P. Tadić, “Convergence of the Gradient Expansion in Hydrodynamics,” Phys. Rev. Lett. 122 (2019), no. 25, 251601, 1904.01018.
  22. B. Withers, “Short-lived modes from hydrodynamic dispersion relations,” JHEP 06 (2018) 059, 1803.08058.
  23. N. Abbasi and S. Tahery, “Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential,” JHEP 10 (2020) 076, 2007.10024.
  24. A. Jansen and C. Pantelidou, “Quasinormal modes in charged fluids at complex momentum,” JHEP 10 (2020) 121, 2007.14418.
  25. S. Grozdanov, P. K. Kovtun, A. O. Starinets, and P. Tadić, “The complex life of hydrodynamic modes,” JHEP 11 (2019) 097, 1904.12862.
  26. S. Grozdanov, A. O. Starinets, and P. Tadić, “Hydrodynamic dispersion relations at finite coupling,” JHEP 06 (2021) 180, 2104.11035.
  27. M. Asadi, H. Soltanpanahi, and F. Taghinavaz, “Critical behaviour of hydrodynamic series,” JHEP 05 (2021) 287, 2102.03584.
  28. F. Taghinavaz, “Relativistic hydrodynamics with phase transition,” 2309.14773.
  29. S. Grozdanov, “Bounds on transport from univalence and pole-skipping,” Phys. Rev. Lett. 126 (2021), no. 5, 051601, 2008.00888.
  30. P. L. Duren, Univalent functions. Grundlehren der mathematischen Wissenschaften. Springer New York, NY, 2011.
  31. O. Lehto, Univalent Functions and Teichmüller Spaces. Graduate Texts in Mathematics. Springer New York, 2011.
  32. M. Baggioli, S. Grieninger, S. Grozdanov, and Z. Lu, “Aspects of univalence in holographic axion models,” JHEP 11 (2022) 032, 2205.06076.
  33. P. Haldar, A. Sinha, and A. Zahed, “Quantum field theory and the Bieberbach conjecture,” SciPost Phys. 11 (2021) 002, 2103.12108.
  34. S. Grozdanov, A. Lucas, and N. Poovuttikul, “Holography and hydrodynamics with weakly broken symmetries,” Phys. Rev. D 99 (2019), no. 8, 086012, 1810.10016.
  35. F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Causality and existence of solutions of relativistic viscous fluid dynamics with gravity,” Phys. Rev. D 98 (2018), no. 10, 104064, 1708.06255.
  36. P. Kovtun, “First-order relativistic hydrodynamics is stable,” JHEP 10 (2019) 034, 1907.08191.
  37. K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz, and A. Yarom, “Towards hydrodynamics without an entropy current,” Phys. Rev. Lett. 109 (2012) 101601, 1203.3556.
  38. R. E. Hoult and P. Kovtun, “Stable and causal relativistic Navier-Stokes equations,” JHEP 06 (2020) 067, 2004.04102.
  39. F. Taghinavaz, “Causality and Stability Conditions of a Conformal Charged Fluid,” JHEP 08 (2020) 119, 2004.01897.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube