Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Imaging through scattering media by exploiting the optical memory effect: a tutorial (2404.14088v1)

Published 22 Apr 2024 in physics.optics

Abstract: Scattering, especially multiple scattering, is a well known problem in imaging, ranging from astronomy to medicine. In particular it is often desirable to be able to perform non-invasive imaging through turbid and/or opaque media. Many different approaches have been proposed and tested through the years, each with their own advantages, disadvantages, and specific situations in which they work. In this tutorial we will show how knowledge of the correlations arising from the multiple scattering of light allows for non-invasive imaging through a strongly scattering layer, with particular attention on the practicalities of how to make such an experiment work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Bertolotti and O. Katz, “Imaging in complex media,” Nature Physics, vol. 18, p. 1008, 2022.
  2. S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, “Deep optical imaging within complex scattering media,” Nature Reviews Physics, vol. 2, p. 141, 2020.
  3. S. Gigan, O. Katz, H. B. de Aguiar, E. R. Andresen, A. Aubry, J. Bertolotti, E. Bossy, D. Bouchet, J. Brake, S. Brasselet, Y. Bromberg, H. Cao, T. Chaigne, Z. Cheng, W. Choi, T. Čižmár, M. Cui, V. R. Curtis, H. Defienne, M. Hofer, R. Horisaki, R. Horstmeyer, N. Ji, A. K. LaViolette, J. Mertz, C. Moser, A. P. Mosk, N. C. Pégard, R. Piestun, S. Popoff, D. B. Phillips, D. Psaltis, B. Rahmani, H. Rigneault, S. Rotter, L. Tian, I. M. Vellekoop, L. Waller, L. Wang, T. Weber, S. Xiao, C. Xu, A. Yamilov, C. Yang, and H. Yılmaz, “Roadmap on wavefront shaping and deep imaging in complex media,” Journal of Physics: Photonics, vol. 4, p. 042501, 2022.
  4. D. S. Richardson and J. W. Lichtman, “Clarifying tissue clearing,” Cell, vol. 162, p. 246, 2015.
  5. B. Abbey, L. W. Whitehead, H. M. Quiney, D. J. Vine, G. A. Cadenazzi, C. A. Henderson, K. A. Nugent, E. Balaur, C. T. Putkunz, A. G. Peele, G. J. Williams, and I. McNulty, “Lensless imaging using broadband x-ray sources,” Nature Photonics, vol. 5, p. 420, 2011.
  6. J. Bertolotti, E. van Putten, C. Blum, A. Lagendijk, W. Vos, and A. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature, vol. 491, p. 232, 2012.
  7. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nature Phot, vol. 8, p. 784, 2014.
  8. S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys., vol. 89, p. 015005, 2017.
  9. H. Cao, A. P. Mosk, and S. Rotter, “Shaping the propagation of light in complex media,” Nature Physics, vol. 18, p. 994, 2022.
  10. B. van Tiggelen, “Localization of waves,” in Wave Diffusion in Complex Media (J. P. Fouque, ed.), NATO Science, Kluver, 1998.
  11. Springer, 2010.
  12. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons. Cambridge University Press, 2007.
  13. R. Carminati and J. C. Schotland, Principles of scattering and transport of light. Cambridge University Press, 2021.
  14. W. E. Lamb, “Anti-photon,” Applied Physics B, vol. 60, p. 77, 1995.
  15. J. W. Goodman, Statistical Optics. John Wiley & Sons, 1985.
  16. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett., vol. 61, pp. 834–837, Aug 1988.
  17. I. Freund, “Looking through walls and around corners,” Physica A, vol. 168, pp. 49–65, 1990.
  18. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications. SPIE, 2020.
  19. Springer Berlin Heidelberg, 1975.
  20. J. R. Fienup, “Reconstruction of an object from the modulus of its fourier transform,” Opt. Lett., vol. 3, no. 1, p. 27, 1978.
  21. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Expr., vol. 26, p. 9866, 2018.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 77 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube