Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Generalized Entanglement Capacity of de Sitter Space (2404.13684v3)

Published 21 Apr 2024 in hep-th and gr-qc

Abstract: Near horizons, quantum fields of low spin exhibit densities of states that behave asymptotically like 1+1 dimensional conformal field theories. In effective field theory, imposing some short-distance cutoff, one can compute thermodynamic quantities associated with the horizon, and the leading cutoff sensitivity of the heat capacity is found to equal to the leading cutoff sensitivity of the entropy. One can also compute contributions to the thermodynamic quantities from the gravitational path integral. For the cosmological horizon of the static patch of de Sitter space, a natural conjecture for the relevant heat capacity is shown to equal the Bekenstein-Hawking entropy. These observations allow us to extend the well-known notion of the generalized entropy to a generalized heat capacity for the static patch of dS. The finiteness of the entropy and the nonvanishing of the generalized heat capacity suggests it is useful to think about dS as a state in a finite dimensional quantum gravity model that is not maximally uncertain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. T. Banks, Talk at the Festschrift for L. Susskind, Stanford University, May 2000. T. Banks, “Cosmological breaking of supersymmetry?,” Int. J. Mod. Phys. A 16, 910-921 (2001) doi:10.1142/S0217751X01003998 [arXiv:hep-th/0007146 [hep-th]].
  2. H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05, 036 (2011) doi:10.1007/JHEP05(2011)036 [arXiv:1102.0440 [hep-th]].
  3. E. Verlinde and K. M. Zurek, “Spacetime Fluctuations in AdS/CFT,” JHEP 04, 209 (2020) doi:10.1007/JHEP04(2020)209 [arXiv:1911.02018 [hep-th]].
  4. T. Banks, B. Fiol and A. Morisse, “Towards a quantum theory of de Sitter space,” JHEP 12, 004 (2006) doi:10.1088/1126-6708/2006/12/004 [arXiv:hep-th/0609062 [hep-th]].
  5. P. Draper and S. Farkas, “de Sitter black holes as constrained states in the Euclidean path integral,” Phys. Rev. D 105, no.12, 126022 (2022) doi:10.1103/PhysRevD.105.126022 [arXiv:2203.02426 [hep-th]].
  6. T. Banks and K. M. Zurek, “Conformal description of near-horizon vacuum states,” Phys. Rev. D 104, no.12, 126026 (2021) doi:10.1103/PhysRevD.104.126026 [arXiv:2108.04806 [hep-th]].
  7. R. D. Sorkin, “1983 paper on entanglement entropy: ”On the Entropy of the Vacuum outside a Horizon”,” [arXiv:1402.3589 [gr-qc]]; M. Srednicki,“Entropy and area,” Phys. Rev. Lett. 71, 666-669 (1993) doi:10.1103/PhysRevLett.71.666 [arXiv:hep-th/9303048 [hep-th]]; C. G. Callan, Jr. and F. Wilczek, “On geometric entropy,” Phys. Lett. B 333, 55-61 (1994) doi:10.1016/0370-2693(94)91007-3 [arXiv:hep-th/9401072 [hep-th]].
  8. L. Susskind and J. Uglum, “Black hole entropy in canonical quantum gravity and superstring theory,” Phys. Rev. D 50, 2700-2711 (1994) doi:10.1103/PhysRevD.50.2700 [arXiv:hep-th/9401070 [hep-th]]; T. Jacobson, “Black hole entropy and induced gravity,” [arXiv:gr-qc/9404039 [gr-qc]].
  9. J. Kudler-Flam, S. Leutheusser, A. A. Rahman, G. Satishchandran and A. J. Speranza, “A covariant regulator for entanglement entropy: proofs of the Bekenstein bound and QNEC,” [arXiv:2312.07646 [hep-th]].
  10. E. Witten, “Gravity and the crossed product,” JHEP 10, 008 (2022) doi:10.1007/JHEP10(2022)008 [arXiv:2112.12828 [hep-th]]; V. Chandrasekaran, G. Penington and E. Witten, “Large N algebras and generalized entropy,” JHEP 04, 009 (2023) doi:10.1007/JHEP04(2023)009 [arXiv:2209.10454 [hep-th]];
  11. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04, 021 (2003) doi:10.1088/1126-6708/2003/04/021 [arXiv:hep-th/0106112 [hep-th]].
  12. V. Chandrasekaran, R. Longo, G. Penington and E. Witten, “An Algebra of Observables for de Sitter Space,” [arXiv:2206.10780 [hep-th]].
  13. E. Witten, “Gravity and the crossed product,” JHEP 10, 008 (2022) doi:10.1007/JHEP10(2022)008 [arXiv:2112.12828 [hep-th]].
  14. S. Leutheusser and H. Liu, “Causal connectability between quantum systems and the black hole interior in holographic duality,” Phys. Rev. D 108, no.8, 086019 (2023) doi:10.1103/PhysRevD.108.086019 [arXiv:2110.05497 [hep-th]]; S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” [arXiv:2212.13266 [hep-th]].
  15. T. Banks and W. Fischler, “Holographic Inflation Revised,” doi:10.1017/9781316535783.013 [arXiv:1501.01686 [hep-th]].
  16. T. Banks and Sidan A., In progress
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.