Cross-Forming Control and Fault Current Limiting for Grid-Forming Inverters (2404.13376v4)
Abstract: This article proposes a "cross-forming" control concept for grid-forming inverters operating against grid faults. Cross-forming refers to voltage angle forming and current magnitude forming. It differs from classical grid-forming and grid-following paradigms that feature voltage magnitude-and-angle forming and voltage magnitude-and-angle following (or current magnitude-and-angle forming), respectively. The cross-forming concept addresses the need for inverters to remain grid-forming (particularly voltage angle forming, as required by grid codes) while managing fault current limitation. Simple and feasible cross-forming control implementations are proposed, enabling inverters to quickly limit fault currents to a prescribed level while preserving voltage angle forming for grid-forming synchronization and providing dynamic ancillary services, during symmetrical or asymmetrical fault ride-through. Moreover, the cross-forming control yields an equivalent system featuring a constant virtual impedance and a "normal form" representation, allowing for the extension of previously established transient stability results to include scenarios involving current saturation. Simulations and experiments validate the efficacy of the proposed cross-forming control implementations.
- A. Johnson, “Minimum specification required for provision of GB grid forming (GBGF) capability (formerly virtual synchronous machine/VSM capability),” 2021. [Online]. Available: https://www.nationalgrideso.com/industry-information/codes/gc/modifications/gc0137-minimum-specification-required-provision-gb-grid
- “Voluntary specification for grid-forming inverters,” Australian Energy Market Operator (AEMO), Tech. Rep., 2023.
- B. Bahrani, M. H. Ravanji, B. Kroposki, D. Ramasubramanian, X. Guillaud, T. Prevost, and N.-A. Cutululis, “Grid-forming inverter-based resource research landscape: Understanding the key assets for renewable-rich power systems,” IEEE Power Energy Mag., vol. 22, no. 2, pp. 18–29, 2024.
- D. Pan, X. Wang, F. Liu, and R. Shi, “Transient stability of voltage-source converters with grid-forming control: A design-oriented study,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1019–1033, 2020.
- R. Rosso, X. Wang, M. Liserre, X. Lu, and S. Engelken, “Grid-forming converters: Control approaches, grid-synchronization, and future trends—a review,” IEEE Open J. Ind. Appl., vol. 2, pp. 93–109, 2021.
- H. Zhang, W. Xiang, W. Lin, and J. Wen, “Grid forming converters in renewable energy sources dominated power grid: Control strategy, stability, application, and challenges,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1239–1256, 2021.
- F. Dörfler and D. Groß, “Control of low-inertia power systems,” Annu. Rev. Control Robot. Auton. Syst., vol. 6, pp. 415–445, 2023.
- A. D. Paquette and D. M. Divan, “Virtual impedance current limiting for inverters in microgrids with synchronous generators,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1630–1638, 2015.
- T. Qoria, F. Gruson, F. Colas, X. Kestelyn, and X. Guillaud, “Current limiting algorithms and transient stability analysis of grid-forming VSCs,” Electr. Power Syst. Res., vol. 189, p. 106726, 2020.
- R. Rosso, S. Engelken, and M. Liserre, “On the implementation of an FRT strategy for grid-forming converters under symmetrical and asymmetrical grid faults,” IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 4385–4397, 2021.
- K. V. Kkuni and G. Yang, “Effects of current limit for grid forming converters on transient stability: analysis and solution,” Int. J. Electr. Power Energy Syst., vol. 158, p. 109919, 2024.
- B. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 3141–3144, 2022.
- Y. Zhang, C. Zhang, R. Yang, M. Molinas, and X. Cai, “Current-constrained power-angle characterization method for transient stability analysis of grid-forming voltage source converters,” IEEE Trans. Energy Convers., vol. 38, no. 2, pp. 1338–1349, 2023.
- K. G. Saffar, S. Driss, and F. B. Ajaei, “Impacts of current limiting on the transient stability of the virtual synchronous generator,” IEEE Trans. Power Electron., vol. 38, no. 2, pp. 1509–1521, 2023.
- L. Huang, H. Xin, Z. Wang, L. Zhang, K. Wu, and J. Hu, “Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 578–591, 2019.
- E. Rokrok, T. Qoria, A. Bruyere, B. Francois, and X. Guillaud, “Transient stability assessment and enhancement of grid-forming converters embedding current reference saturation as current limiting strategy,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1519–1531, 2022.
- Y. Liu, H. Geng, M. Huang, and X. Zha, “Dynamic current limiting of grid-forming converters for transient synchronization stability enhancement,” IEEE Trans. Ind. Appl., pp. 1–11, 2023.
- Y. Li, Y. Lu, J. Yang, X. Yuan, R. Yang, S. Yang, H. Ye, and Z. Du, “Transient stability of power synchronization loop based grid forming converter,” IEEE Trans. Energy Convers., pp. 1–16, 2023.
- G. Wang, L. Fu, Q. Hu, C. Liu, and Y. Ma, “Transient synchronization stability of grid-forming converter during grid fault considering transient switched operation mode,” IEEE Trans. Sustain. Energy, vol. 14, no. 3, pp. 1504–1515, 2023.
- H. Xin, K. Zhuang, P. Hu, Y. Gu, and P. Ju, “Dual synchronous generator: Inertial current source based grid-forming solution for VSC,” arXiv preprint arXiv:2107.01805, 2021.
- M. Schweizer, S. Almér, S. Pettersson, A. Merkert, V. Bergemann, and L. Harnefors, “Grid-forming vector current control,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 13 091–13 106, 2022.
- T. Qoria, H. Wu, X. Wang, and I. Colak, “Variable virtual impedance-based overcurrent protection for grid-forming inverters: Small-signal, large-signal analysis and improvement,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3324–3336, 2023.
- T. Liu, X. Wang, F. Liu, K. Xin, and Y. Liu, “A current limiting method for single-loop voltage-magnitude controlled grid-forming converters during symmetrical faults,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 4751–4763, 2022.
- T. Qoria, F. Gruson, F. Colas, G. Denis, T. Prevost, and X. Guillaud, “Critical clearing time determination and enhancement of grid-forming converters embedding virtual impedance as current limitation algorithm,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1050–1061, 2020.
- Y. Li, Y. Gu, and T. C. Green, “Revisiting grid-forming and grid-following inverters: A duality theory,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4541–4554, 2022.
- Y. Zhang, C. Zhang, M. Molinas, and X. Cai, “Control of virtual synchronous generator with improved transient angle stability under symmetric and asymmetric short circuit fault,” IEEE Trans. Energy Convers., 2024.
- M. A. Awal, M. R. K. Rachi, H. Yu, I. Husain, and S. Lukic, “Double synchronous unified virtual oscillator control for asymmetrical fault ride-through in grid-forming voltage source converters,” IEEE Trans. Power Electron., vol. 38, no. 6, pp. 6759–6763, 2023.
- T. Zheng, L. Chen, Y. Guo, and S. Mei, “Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 1, pp. 61–72, 2018.
- M.-A. Nasr and A. Hooshyar, “Controlling grid-forming inverters to meet the negative-sequence current requirements of the IEEE Standard 2800-2022,” IEEE Trans. Power Del., vol. 38, no. 4, pp. 2541–2555, 2023.
- IEEE Standards Association, “IEEE standard for interconnection and interoperability of inverter-based resources (IBRs) interconnecting with associated transmission electric power systems,” IEEE Std. 2800-2022, pp. 1–180, 2022.
- X. He, C. He, S. Pan, H. Geng, and F. Liu, “Synchronization instability of inverter-based generation during asymmetrical grid faults,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1018–1031, 2022.
- X. He, H. Geng, J. Xi, and J. M. Guerrero, “Resynchronization analysis and improvement of grid-connected VSCs during grid faults,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 1, pp. 438–450, 2021.
- J. Jia, G. Yang, and A. H. Nielsen, “A review on grid-connected converter control for short-circuit power provision under grid unbalanced faults,” IEEE Trans. Power Del., vol. 33, no. 2, pp. 649–661, 2018.
- I. Sadeghkhani, M. E. Hamedani Golshan, J. M. Guerrero, and A. Mehrizi-Sani, “A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2138–2148, 2017.
- H. Wu and X. Wang, “Small-signal modeling and controller parameters tuning of grid-forming vscs with adaptive virtual impedance-based current limitation,” IEEE Trans. Power Electron., vol. 37, no. 6, pp. 7185–7199, 2022.
- O. Mo, S. D’Arco, and J. A. Suul, “Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5952–5962, 2017.
- J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, pp. 451–458, 2015.
- H. Wu and X. Wang, “A mode-adaptive power-angle control method for transient stability enhancement of virtual synchronous generators,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1034–1049, 2020.
- M. G. Taul, X. Wang, P. Davari, and F. Blaabjerg, “Current limiting control with enhanced dynamics of grid-forming converters during fault conditions,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1062–1073, 2020.
- J. Wang and X. Zhang, “Active power and voltage cooperative control for improving fault ride-through capability of grid-forming converters,” IEEE Trans. Ind. Electron., pp. 1–11, 2024.
- J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457–2469, 2014.
- M. Colombino, D. Groß, J.-S. Brouillon, and F. Dörfler, “Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters,” IEEE Trans. Autom. Control, vol. 64, no. 11, pp. 4496–4511, 2019.
- X. He and F. Dörfler, “Passivity and decentralized stability conditions for grid-forming converters,” IEEE Trans. Power Syst., pp. 1–4, 2024.
- M. Choopani, S. H. Hosseinian, and B. Vahidi, “New transient stability and LVRT improvement of multi-VSG grids using the frequency of the center of inertia,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 527–538, 2020.
- Z. Shuai, C. Shen, X. Liu, Z. Li, and Z. J. Shen, “Transient angle stability of virtual synchronous generators using Lyapunov’s direct method,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4648–4661, 2019.
- M. Kabalan, P. Singh, and D. Niebur, “Large signal Lyapunov-based stability studies in microgrids: A review,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2287–2295, 2017.
- X. He, L. Huang, I. Subotić, V. Häberle, and F. Dörfler, “Quantitative stability conditions for grid-forming converters with complex droop control,” IEEE Trans. Power Electron., pp. 1–19, 2024.
- M. A. Desai, X. He, L. Huang, and F. Dörfler, “Saturation-informed current-limiting control for grid-forming converters,” Electr. Power Syst. Res., pp. 1–7, 2023.
- F. Milano, “Complex frequency,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1230–1240, 2022.
- I. Subotić and D. Groß, “Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems,” IEEE Trans. Control Netw. Syst., vol. 9, no. 4, pp. 1949–1961, 2022.
- L. Huang, H. Xin, Z. Wang, K. Wu, H. Wang, J. Hu, and C. Lu, “A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 4, pp. 1565–1577, 2017.
- A. Tayyebi, A. Anta, and F. Dörfler, “Grid-forming hybrid angle control and almost global stability of the DC-AC power converter,” IEEE Trans. Autom. Control, vol. 68, no. 7, pp. 3842–3857, 2023.
- J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodriguez, and R. Teodorescu, “Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4088–4096, 2009.
- D. Zmood and D. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814–822, 2003.
- VDE/FNN, “Technical requirements for the connection and operation of customer installations to the high voltage network (TAR high voltage),” 2017.
- Ö. Göksu, R. Teodorescu, C. L. Bak, F. Iov, and P. Carne Kjær, “Impact of wind power plant reactive current injection during asymmetrical grid faults,” IET Renew. Power Gener., vol. 7, no. 5, pp. 484–492, 2013.
- S. Pola, M. Azzouz, A. S. Awad, and H. Sindi, “Fault ride-through strategies for synchronverter-interfaced energy resources under asymmetrical grid faults,” IEEE Trans. Sustain. Energy, vol. 14, no. 4, pp. 2391–2405, 2023.
- A. S. Vijay, N. Parth, S. Doolla, and M. C. Chandorkar, “An adaptive virtual impedance control for improving power sharing among inverters in islanded ac microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 2991–3003, 2021.
- B. Fan, T. Liu, F. Zhao, H. Wu, and X. Wang, “A review of current-limiting control of grid-forming inverters under symmetrical disturbances,” IEEE Open J. Power Electron., vol. 3, pp. 955–969, 2022.
- N. Baeckeland, D. Venkatramanan, M. Kleemann, and S. Dhople, “Stationary-frame grid-forming inverter control architectures for unbalanced fault-current limiting,” IEEE Trans. Energy Convers., vol. 37, no. 4, pp. 2813–2825, 2022.
- H. Zhang, R. Liu, C. Xue, and Y. Li, “Simultaneous overvoltage and overcurrent mitigation strategy of grid-forming inverters under a single-line-to-ground fault,” IEEE Trans. Ind. Electron., 2023.
- S. F. Zarei, H. Mokhtari, M. A. Ghasemi, and F. Blaabjerg, “Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme,” IEEE Trans. Power Del., vol. 34, no. 5, pp. 1827–1842, 2019.
- K. Schönleber, E. Prieto-Araujo, S. Ratés-Palau, and O. Gomis-Bellmunt, “Extended current limitation for unbalanced faults in MMC-HVDC-connected wind power plants,” IEEE Trans. Power Del., vol. 33, no. 4, pp. 1875–1884, 2018.
- J.-W. Choi and S.-C. Lee, “Antiwindup strategy for PI-type speed controller,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2039–2046, 2009.
- A. Ghoshal and V. John, “Anti-windup schemes for proportional integral and proportional resonant controller.” in National Power Electronic Conference, 2010.
- O. Ajala, M. Lu, B. Johnson, S. V. Dhople, and A. Domínguez-García, “Model reduction for inverters with current limiting and dispatchable virtual oscillator control,” IEEE Trans. Energy Convers., vol. 37, no. 4, pp. 2250–2259, 2022.
- H. Zhang, R. Liu, C. Xue, and Y. Li, “Active power enhancement control strategy of grid-forming inverters under asymmetrical grid faults,” IEEE Trans. Power Electron., vol. 39, no. 1, pp. 1447–1459, 2023.
- J. Chen, F. Prystupczuk, and T. O’Donnell, “Use of voltage limits for current limitations in grid-forming converters,” CSEE J. Power Energy Syst., vol. 6, no. 2, pp. 259–269, 2020.
- S. Jiang, Y. Zhu, T. Xu, and G. Konstantinou, “Current-synchronization control of grid-forming converters for fault current limiting and enhanced synchronization stability,” IEEE Trans. Power Electron., pp. 1–15, 2024.
- H. Wu, X. Wang, and L. Zhao, “Design considerations of current-limiting control for grid-forming capability enhancement of VSCs under large grid disturbances,” IEEE Trans. Power Electron., pp. 1–5, 2024.