Pure Significance Tests for Multinomial and Binomial Distributions: the Uniform Alternative (2404.13248v1)
Abstract: A {\it pure significance test} (PST) tests a simple null hypothesis $H_f:Y\sim f$ {\it without specifying an alternative hypothesis} by rejecting $H_f$ for {\it small} values of $f(Y)$. When the sample space supports a proper uniform pmf $f_\mathrm{unif}$, the PST can be viewed as a classical likelihood ratio test for testing $H_f$ against this uniform alternative. Under this interpretation, standard test features such as power, Kullback-Leibler divergence, and expected $p$-value can be considered. This report focuses on PSTs for multinomial and binomial distributions, and for the related goodness-of-fit testing problems with the uniform alternative. The case of repeated observations cannot be reduced to the single observation case via sufficiency. The {\it ordered binomial distribution}, apparently new, arises in the course of this study.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.