Cosmic-Ray Propagation Models Elucidate the Prospects for Antinuclei Detection (2404.13114v1)
Abstract: Tentative observations of cosmic-ray antihelium by the AMS-02 collaboration have re-energized the quest to use antinuclei to search for physics beyond the standard model. However, our transition to a data-driven era requires more accurate models of the expected astrophysical antinuclei fluxes. We use a state-of-the-art cosmic-ray propagation model, fit to high-precision antiproton and cosmic-ray nuclei (B, Be, Li) data, to constrain the antinuclei flux from both astrophysical and dark matter annihilation models. We show that astrophysical sources are capable of producing $\mathcal{O}(1)$ antideuteron events and $\mathcal{O}(0.1)$ antihelium-3 events over 15~years of AMS-02 observations. Standard dark matter models could potentially produce higher levels of these antinuclei, but showing a different energy-dependence. Given the uncertainties in these models, dark matter annihilation is still the most promising candidate to explain preliminary AMS-02 results. Meanwhile, any robust detection of antihelium-4 events would require more novel dark matter model building or a new astrophisical production mechanism.
- J. Silk and M. Srednicki, Phys. Rev. Lett. 53, 624 (1984).
- S. Rudaz and F. W. Stecker, apj 325, 16 (1988).
- G. Jungman and M. Kamionkowski, Phys. Rev. D 49, 2316 (1994).
- O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett. 102, 051101 (2009).
- O. Adriani et al., Phys. Rev. Lett. 105, 121101 (2010).
- I. John and T. Linden, Journal of Cosmology and Astroparticle Physics 2021, 007 (2021).
- I. Krommydas and I. Cholis, “Revisiting gev-scale annihilating dark matter with the ams-02 positron fraction,” (2022).
- M. W. Winkler, JCAP 02, 048 (2017), arXiv:1701.04866 [hep-ph] .
- S. Ting, Press Conference at CERN (2016), indico.cern.ch/event/592392/attachments/1381599/2110332/AMS-CERN-Dec-2016.pdf .
- P. von Doetinchem et al., JCAP 08, 035 (2020), arXiv:2002.04163 [astro-ph.HE] .
- M. W. Winkler and T. Linden, Phys. Rev. Lett. 126, 101101 (2021a), arXiv:2006.16251 [hep-ph] .
- ALICE Collaboration, “Letter of intent for alice 3: A next-generation heavy-ion experiment at the lhc,” (2022).
- J. Heeck and A. Rajaraman, J. Phys. G 47, 105202 (2020), arXiv:1906.01667 [hep-ph] .
- D. Curtin and C. Gemmell, “Indirect detection of dark matter annihilating into dark glueballs,” (2022).
- S. Acharya et al. (ALICE), Nature Phys. 19, 61 (2023), arXiv:2202.01549 [nucl-ex] .
- and S. Acharya et al., Journal of High Energy Physics 2022 (2022), 10.1007/jhep01(2022)106.
- C. Bierlich et al., SciPost Phys. Codeb. 2022, 8 (2022), arXiv:2203.11601 [hep-ph] .
- J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), arXiv:1512.01178 [hep-ph] .
- A. Schwarzschild and i. c. v. Zupančič, Phys. Rev. 129, 854 (1963).
- R. Kappl and M. W. Winkler, JCAP 09, 051 (2014), arXiv:1408.0299 [hep-ph] .
- M. W. Winkler and T. Linden, “Response to comment on "dark matter annihilation can produce a detectable antihelium flux through Λb¯¯subscriptΛ𝑏\bar{\Lambda_{b}}over¯ start_ARG roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_ARG decays",” (2021b).
- G. A. et al. and, The European Physical Journal C 9, 1 (1999).
- Particle Data Group, Eur. Phys. J. C 3, 1 (1998).
- P. De la Torre Luque, PoS ICRC2023, 1369 (2023).
- K. Blum and M. Takimoto, Phys. Rev. C 99, 044913 (2019), arXiv:1901.07088 [nucl-th] .
- B. Alper et al., Phys. Lett. B 46, 265 (1973).
- M. G. Albrow et al. (CHLM), Nucl. Phys. B 97, 189 (1975).
- S. Henning et al. (British-Scandinavian-MIT), Lett. Nuovo Cim. 21, 189 (1978).
- S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 97, 024615 (2018).
- S. Schael et al., Physics Letters B 639, 192 (2006).
- L. C. Tan and L. K. Ng, Journal of Physics G: Nuclear Physics 9, 1453 (1983).
- A. A. Moiseev and J. F. Ormes, Astroparticle Physics 6, 379 (1997).
- S. Acharya et al. (A Large Ion Collider Experiment Collaboration), Phys. Rev. Lett. 125, 162001 (2020).
- P. Salati, F. Donato, and N. Fornengo, “Indirect dark matter detection with cosmic antimatter,” (2010).
- F. Rogers et al., “Sensitivity of the gaps experiment to low-energy cosmic-ray antiprotons,” (2022).
- R. Battiston, in 43rd COSPAR Scientific Assembly. Held 28 January - 4 February, Vol. 43 (2021) p. 1369.
- P. Zuccon, MIAPP Conference: Antinuclei in the Universe? (2022), indico.ph.tum.de/event/6990/contributions/4988/attachments/3947/4992/Zuccon_miapp.pdf .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.