Recurrent Neural Networks for Modelling Gross Primary Production (2404.12745v1)
Abstract: Accurate quantification of Gross Primary Production (GPP) is crucial for understanding terrestrial carbon dynamics. It represents the largest atmosphere-to-land CO$_2$ flux, especially significant for forests. Eddy Covariance (EC) measurements are widely used for ecosystem-scale GPP quantification but are globally sparse. In areas lacking local EC measurements, remote sensing (RS) data are typically utilised to estimate GPP after statistically relating them to in-situ data. Deep learning offers novel perspectives, and the potential of recurrent neural network architectures for estimating daily GPP remains underexplored. This study presents a comparative analysis of three architectures: Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), and Long-Short Term Memory (LSTMs). Our findings reveal comparable performance across all models for full-year and growing season predictions. Notably, LSTMs outperform in predicting climate-induced GPP extremes. Furthermore, our analysis highlights the importance of incorporating radiation and RS inputs (optical, temperature, and radar) for accurate GPP predictions, particularly during climate extremes.
- C. Aybar et al. CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in sentinel-2. Scientific Data, 9(1), Dec. 2022. doi: 10.1038/s41597-022-01878-2. URL https://doi.org/10.1038/s41597-022-01878-2.
- D. D. Baldocchi. How eddy covariance flux measurements have contributed to our understanding of global change biology. Global Change Biology, 26(1):242–260, Sept. 2019. ISSN 1365-2486. doi: 10.1111/gcb.14807. URL http://dx.doi.org/10.1111/gcb.14807.
- S. Besnard et al. Memory effects of climate and vegetation affecting net ecosystem co2 fluxes in global forests. PLOS ONE, 14(2):e0211510, Feb. 2019. ISSN 1932-6203. doi: 10.1371/journal.pone.0211510. URL http://dx.doi.org/10.1371/journal.pone.0211510.
- G. B. Bonan. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444–1449, June 2008. ISSN 1095-9203. doi: 10.1126/science.1155121. URL http://dx.doi.org/10.1126/science.1155121.
- P. Friedlingstein et al. Global carbon budget 2023. Earth System Science Data, 15(12):5301–5369, Dec. 2023. ISSN 1866-3516. doi: 10.5194/essd-15-5301-2023. URL http://dx.doi.org/10.5194/essd-15-5301-2023.
- A. J. Hoek van Dijke et al. Comparing forest and grassland drought responses inferred from eddy covariance and earth observation. Agricultural and Forest Meteorology, 341:109635, Oct. 2023. ISSN 0168-1923. doi: 10.1016/j.agrformet.2023.109635. URL http://dx.doi.org/10.1016/j.agrformet.2023.109635.
- M. Jung et al. The fluxcom ensemble of global land-atmosphere energy fluxes. Scientific Data, 6(1), May 2019. ISSN 2052-4463. doi: 10.1038/s41597-019-0076-8. URL http://dx.doi.org/10.1038/s41597-019-0076-8.
- F. Martinuzzi et al. Learning extreme vegetation response to climate forcing: A comparison of recurrent neural network architectures. EGUsphere, pages 1–32, Oct. 2023. doi: 10.5194/egusphere-2023-2368. URL http://dx.doi.org/10.5194/egusphere-2023-2368.
- D. Montero et al. A standardized catalogue of spectral indices to advance the use of remote sensing in earth system research. Scientific Data, 10(1), Apr. 2023. doi: 10.1038/s41597-023-02096-0. URL https://doi.org/10.1038/s41597-023-02096-0.
- I. Reda et al. Solar Position Algorithm for Solar Radiation Applications (Revised). Jan. 2008. doi: 10.2172/15003974. URL http://dx.doi.org/10.2172/15003974.
- M. Reichstein et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9):1424–1439, Sept. 2005. doi: 10.1111/j.1365-2486.2005.001002.x. URL https://doi.org/10.1111/j.1365-2486.2005.001002.x.
- D. P. Roy et al. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment, 199:25–38, 2017. ISSN 00344257. doi: 10.1016/j.rse.2017.06.019. URL http://dx.doi.org/10.1016/j.rse.2017.06.019.
- D. Schimel et al. Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5):1762–1776, Feb. 2015. ISSN 1365-2486. doi: 10.1111/gcb.12822. URL http://dx.doi.org/10.1111/gcb.12822.
- Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre. Warm winter 2020 ecosystem eddy covariance flux product for 73 stations in fluxnet-archive format—release 2022-1, 2022. URL https://www.icos-cp.eu/data-products/2G60-ZHAK.
- Y. Zeng et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3(7):477–493, May 2022. ISSN 2662-138X. doi: 10.1038/s43017-022-00298-5. URL http://dx.doi.org/10.1038/s43017-022-00298-5.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.