Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Recurrent Neural Networks for Modelling Gross Primary Production (2404.12745v1)

Published 19 Apr 2024 in cs.LG

Abstract: Accurate quantification of Gross Primary Production (GPP) is crucial for understanding terrestrial carbon dynamics. It represents the largest atmosphere-to-land CO$_2$ flux, especially significant for forests. Eddy Covariance (EC) measurements are widely used for ecosystem-scale GPP quantification but are globally sparse. In areas lacking local EC measurements, remote sensing (RS) data are typically utilised to estimate GPP after statistically relating them to in-situ data. Deep learning offers novel perspectives, and the potential of recurrent neural network architectures for estimating daily GPP remains underexplored. This study presents a comparative analysis of three architectures: Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), and Long-Short Term Memory (LSTMs). Our findings reveal comparable performance across all models for full-year and growing season predictions. Notably, LSTMs outperform in predicting climate-induced GPP extremes. Furthermore, our analysis highlights the importance of incorporating radiation and RS inputs (optical, temperature, and radar) for accurate GPP predictions, particularly during climate extremes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. Aybar et al. CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in sentinel-2. Scientific Data, 9(1), Dec. 2022. doi: 10.1038/s41597-022-01878-2. URL https://doi.org/10.1038/s41597-022-01878-2.
  2. D. D. Baldocchi. How eddy covariance flux measurements have contributed to our understanding of global change biology. Global Change Biology, 26(1):242–260, Sept. 2019. ISSN 1365-2486. doi: 10.1111/gcb.14807. URL http://dx.doi.org/10.1111/gcb.14807.
  3. S. Besnard et al. Memory effects of climate and vegetation affecting net ecosystem co2 fluxes in global forests. PLOS ONE, 14(2):e0211510, Feb. 2019. ISSN 1932-6203. doi: 10.1371/journal.pone.0211510. URL http://dx.doi.org/10.1371/journal.pone.0211510.
  4. G. B. Bonan. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882):1444–1449, June 2008. ISSN 1095-9203. doi: 10.1126/science.1155121. URL http://dx.doi.org/10.1126/science.1155121.
  5. P. Friedlingstein et al. Global carbon budget 2023. Earth System Science Data, 15(12):5301–5369, Dec. 2023. ISSN 1866-3516. doi: 10.5194/essd-15-5301-2023. URL http://dx.doi.org/10.5194/essd-15-5301-2023.
  6. A. J. Hoek van Dijke et al. Comparing forest and grassland drought responses inferred from eddy covariance and earth observation. Agricultural and Forest Meteorology, 341:109635, Oct. 2023. ISSN 0168-1923. doi: 10.1016/j.agrformet.2023.109635. URL http://dx.doi.org/10.1016/j.agrformet.2023.109635.
  7. M. Jung et al. The fluxcom ensemble of global land-atmosphere energy fluxes. Scientific Data, 6(1), May 2019. ISSN 2052-4463. doi: 10.1038/s41597-019-0076-8. URL http://dx.doi.org/10.1038/s41597-019-0076-8.
  8. F. Martinuzzi et al. Learning extreme vegetation response to climate forcing: A comparison of recurrent neural network architectures. EGUsphere, pages 1–32, Oct. 2023. doi: 10.5194/egusphere-2023-2368. URL http://dx.doi.org/10.5194/egusphere-2023-2368.
  9. D. Montero et al. A standardized catalogue of spectral indices to advance the use of remote sensing in earth system research. Scientific Data, 10(1), Apr. 2023. doi: 10.1038/s41597-023-02096-0. URL https://doi.org/10.1038/s41597-023-02096-0.
  10. I. Reda et al. Solar Position Algorithm for Solar Radiation Applications (Revised). Jan. 2008. doi: 10.2172/15003974. URL http://dx.doi.org/10.2172/15003974.
  11. M. Reichstein et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9):1424–1439, Sept. 2005. doi: 10.1111/j.1365-2486.2005.001002.x. URL https://doi.org/10.1111/j.1365-2486.2005.001002.x.
  12. D. P. Roy et al. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment, 199:25–38, 2017. ISSN 00344257. doi: 10.1016/j.rse.2017.06.019. URL http://dx.doi.org/10.1016/j.rse.2017.06.019.
  13. D. Schimel et al. Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5):1762–1776, Feb. 2015. ISSN 1365-2486. doi: 10.1111/gcb.12822. URL http://dx.doi.org/10.1111/gcb.12822.
  14. Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre. Warm winter 2020 ecosystem eddy covariance flux product for 73 stations in fluxnet-archive format—release 2022-1, 2022. URL https://www.icos-cp.eu/data-products/2G60-ZHAK.
  15. Y. Zeng et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3(7):477–493, May 2022. ISSN 2662-138X. doi: 10.1038/s43017-022-00298-5. URL http://dx.doi.org/10.1038/s43017-022-00298-5.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets