Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Stable, Safe, Distributed Feedback Controller for a Heterogeneous Platoon of Autonomous Vehicles (2404.12474v2)

Published 18 Apr 2024 in cs.LG, cs.AI, cs.MA, cs.RO, cs.SY, and eess.SY

Abstract: Platooning of autonomous vehicles has the potential to increase safety and fuel efficiency on highways. The goal of platooning is to have each vehicle drive at a specified speed (set by the leader) while maintaining a safe distance from its neighbors. Many prior works have analyzed various controllers for platooning, most commonly linear feedback and distributed model predictive controllers. In this work, we introduce an algorithm for learning a stable, safe, distributed controller for a heterogeneous platoon. Our algorithm relies on recent developments in learning neural network stability certificates. We train a controller for autonomous platooning in simulation and evaluate its performance on hardware with a platoon of four F1Tenth vehicles. We then perform further analysis in simulation with a platoon of 100 vehicles. Experimental results demonstrate the practicality of the algorithm and the learned controller by comparing the performance of the neural network controller to linear feedback and distributed model predictive controllers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control,” IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1749–1767, 2023.
  2. S. Magdici and M. Althoff, “Adaptive cruise control with safety guarantees for autonomous vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5774–5781, 2017, 20th IFAC World Congress.
  3. K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “Heavy-duty vehicle platoon formation for fuel efficiency,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1051–1061, 2016.
  4. M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An open-source evaluation environment for continuous control and reinforcement learning,” in NeurIPS 2019 Competition and Demonstration Track.   PMLR, 2020, pp. 77–89.
  5. W. Levine and M. Athans, “On the optimal error regulation of a string of moving vehicles,” IEEE Transactions on Automatic Control, vol. 11, no. 3, pp. 355–361, 1966.
  6. H.-S. Tan, R. Rajamani, and W.-B. Zhang, “Demonstration of an automated highway platoon system,” in Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), vol. 3, 1998, pp. 1823–1827 vol.3.
  7. P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1835–1842, 2004.
  8. Y. Zheng, S. Eben Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 1, pp. 14–26, 2016.
  9. H. Hao and P. Barooah, “Stability and robustness of large platoons of vehicles with double-integrator models and nearest neighbor interaction,” International Journal of Robust and Nonlinear Control, vol. 23, no. 18, pp. 2097–2122, 2013.
  10. G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Transactions on Vehicular Technology, vol. 59, no. 9, pp. 4268–4279, 2010.
  11. K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accident analysis & prevention, vol. 35, no. 3, pp. 427–433, 2003.
  12. D. Swaroop, J. Hedrick, C. Chien, and P. Ioannou, “A comparison of spacing and headway control laws for automatically controlled vehicles,” Vehicle System Dynamics, vol. 23, no. 8, 1994.
  13. W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control of vehicle platoons: Stability and string stability,” IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 620–633, 2012.
  14. Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies,” IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 899–910, 2017.
  15. M. H. Shaham, R. Ranjan, E. Kirda, and T. Padir, “Design and realization of a benchmarking testbed for evaluating autonomous platooning algorithms,” in 2023 International Symposium on Experimental Robotics.   Springer International Publishing, 2024.
  16. L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig, “Safe learning in robotics: From learning-based control to safe reinforcement learning,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 411–444, 2022.
  17. C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochenderfer, “Algorithms for verifying deep neural networks,” Foundations and Trends® in Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.
  18. M. Everett, “Neural network verification in control,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 6326–6340.
  19. M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis of neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953, 2021.
  20. Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” Advances in neural information processing systems, vol. 32, 2019.
  21. H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-stable neural-network control,” in Proceedings of Robotics: Science and Systems, Virtual, July 2021.
  22. Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-agent control with decentralized neural barrier certificates,” in International Conference on Learning Representations, 2020.
  23. S. Stankovic, M. Stanojevic, and D. Siljak, “Decentralized overlapping control of a platoon of vehicles,” IEEE Transactions on Control Systems Technology, vol. 8, no. 5, pp. 816–832, 2000.
  24. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  25. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  26. K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger comfort in automated vehicles: Acceleration and jerk,” Applied Ergonomics, vol. 106, p. 103881, 2023.

Summary

We haven't generated a summary for this paper yet.