Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does spacetime have memories? Searching for gravitational-wave memory in the third LIGO-Virgo-KAGRA gravitational-wave transient catalogue (2404.11919v1)

Published 18 Apr 2024 in gr-qc

Abstract: Gravitational-wave memory is a non-linear effect predicted by general relativity that remains undetected. We apply a Bayesian analysis framework to search for gravitational-wave memory using binary black hole mergers in LIGO-Virgo-KAGRA's third gravitational-wave transient catalogue. We obtain a Bayes factor of $\ln \text{BF}=0.01$, in favour of the no-memory hypothesis, which implies that we are unable to measure memory with currently available data. This is consistent with previous work, suggesting that a catalogue of $\mathcal{O}(2000)$ binary black hole mergers is needed to detect memory. We look for new physics by allowing the memory amplitude to deviate from the prediction of general relativity by a multiplicative factor $A$. We obtain an upper limit of $A<23$ ($95\%$ credibility).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. “A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals” Publisher: IOP Publishing In Classical and Quantum Gravity 37.5, 2020, pp. 055002 DOI: 10.1088/1361-6382/ab685e
  2. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs” In Physical Review X 9.3, 2019, pp. 031040 DOI: 10.1103/PhysRevX.9.031040
  3. “Observation of Gravitational Waves from a Binary Black Hole Merger” In Physical Review Letters 116.6, 2016, pp. 061102 DOI: 10.1103/PhysRevLett.116.061102
  4. “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run” In Physical Review X 11.2, 2021, pp. 021053 DOI: 10.1103/PhysRevX.11.021053
  5. “Advanced Virgo: a second-generation interferometric gravitational wave detector” Publisher: IOP Publishing In Classical and Quantum Gravity 32.2, 2014, pp. 024001 DOI: 10.1088/0264-9381/32/2/024001
  6. “Laser Interferometer Space Antenna” arXiv, 2017 arXiv: http://arxiv.org/abs/1702.00786
  7. “Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy” In The Astrophysical Journal Supplement Series 241.2 American Astronomical Society, 2019, pp. 27 DOI: 10.3847/1538-4365/ab06fc
  8. “Quantifying the Effect of Power Spectral Density Uncertainty on Gravitational-Wave Parameter Estimation for Compact Binary Sources” In Phys. Rev. D 102, 2020, pp. 023008
  9. H. Bondi, M.G.J. Burg and A.W.K. Metzner “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems” Publisher: The Royal Society In Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 269.1336, 1962, pp. 21–52 URL: https://www.jstor.org/stable/2414436
  10. Vladimir B. Braginsky and Kip S. Thorne “Gravitational-wave bursts with memory and experimental prospects” Number: 6118 Publisher: Nature Publishing Group In Nature 327.6118, 1987, pp. 123–125 DOI: 10.1038/327123a0
  11. Demetrios Christodoulou “Nonlinear nature of gravitation and gravitational-wave experiments” In Physical Review Letters 67.12, 1991, pp. 1486–1489 DOI: 10.1103/PhysRevLett.67.1486
  12. The LIGO Scientific Collaboration and Virgo Collaboration “Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914” In Classical and Quantum Gravity 33.13, 2016, pp. 134001 DOI: 10.1088/0264-9381/33/13/134001
  13. “Advanced LIGO” Publisher: IOP Publishing In Classical and Quantum Gravity 32.7, 2015, pp. 074001 DOI: 10.1088/0264-9381/32/7/074001
  14. “GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run” arXiv, 2022 DOI: 10.48550/arXiv.2108.01045
  15. “Search for nonlinear memory from subsolar mass compact binary mergers” Publisher: American Physical Society In Physical Review D 101.10, 2020, pp. 104041 DOI: 10.1103/PhysRevD.101.104041
  16. “IMRPhenomXHM: A multi-mode frequency-domain model for the gravitational wave signal from non-precessing black-hole binaries” In Physical Review D 102.6, 2020, pp. 064002 DOI: 10.1103/PhysRevD.102.064002
  17. “Can gravitational-wave memory help constrain binary black-hole parameters? A LISA case study” Publication Title: arXiv e-prints ADS Bibcode: 2023arXiv230113228G, 2023 DOI: 10.48550/arXiv.2301.13228
  18. Boris Goncharov, Laura Donnay and Jan Harms “Inferring fundamental spacetime symmetries with gravitational-wave memory: from LISA to the Einstein Telescope” arXiv, 2023 arXiv: http://arxiv.org/abs/2310.10718
  19. Alexander M. Grant and David A. Nichols “Outlook for detecting the gravitational-wave displacement and spin memory effects with current and future gravitational-wave detectors” Publisher: American Physical Society In Physical Review D 107.6, 2023, pp. 064056 DOI: 10.1103/PhysRevD.107.064056
  20. Stephen W. Hawking, Malcolm J. Perry and Andrew Strominger “Soft Hair on Black Holes” In Physical Review Letters 116.23, 2016, pp. 231301 DOI: 10.1103/PhysRevLett.116.231301
  21. Lavinia Heisenberg, Nicolás Yunes and Jann Zosso “Gravitational Wave Memory Beyond General Relativity” arXiv, 2023 DOI: 10.48550/arXiv.2303.02021
  22. Moritz Hübner, Paul Lasky and Eric Thrane “The Memory Remains (Undetected): Updates from the Second LIGO/Virgo Gravitational-Wave Transient Catalog” In Physical Review D 104.2, 2021, pp. 023004 DOI: 10.1103/PhysRevD.104.023004
  23. “Measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog” Publisher: American Physical Society In Physical Review D 101.2, 2020, pp. 023011 DOI: 10.1103/PhysRevD.101.023011
  24. “Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors” arXiv, 2019 DOI: 10.48550/arXiv.1906.11936
  25. “Prospects of detecting the nonlinear gravitational wave memory” Publisher: American Physical Society In Physical Review D 99.4, 2019, pp. 044045 DOI: 10.1103/PhysRevD.99.044045
  26. “Detecting gravitational-wave memory with LIGO: implications of GW150914” In Physical Review Letters 117.6, 2016, pp. 061102 DOI: 10.1103/PhysRevLett.117.061102
  27. “Tests of General Relativity with GW170817” Publisher: American Physical Society In Physical Review Letters 123.1, 2019, pp. 011102 DOI: 10.1103/PhysRevLett.123.011102
  28. “Adding Gravitational Memory to Waveform Catalogs using BMS Balance Laws” In Physical Review D 103.2, 2021, pp. 024031 DOI: 10.1103/PhysRevD.103.024031
  29. Ethan Payne, Colm Talbot and Eric Thrane “Higher order gravitational-wave modes with likelihood reweighting” ADS Bibcode: 2019PhRvD.100l3017P In Physical Review D 100, 2019, pp. 123017 DOI: 10.1103/PhysRevD.100.123017
  30. “Computationally efficient models for the dominant and sub-dominant harmonic modes of precessing binary black holes” In Physical Review D 103.10, 2021, pp. 104056 DOI: 10.1103/PhysRevD.103.104056
  31. “The Einstein Telescope: a third-generation gravitational wave observatory” In Classical and Quantum Gravity 27.19, 2010, pp. 194002 DOI: 10.1088/0264-9381/27/19/194002
  32. “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO” arXiv, 2019 DOI: 10.48550/arXiv.1907.04833
  33. “Bayesian inference for compact binary coalescences with BILBY: Validation and application to the first LIGO–Virgo gravitational-wave transient catalogue” In Monthly Notices of the Royal Astronomical Society 499.3, 2020, pp. 3295–3319 DOI: 10.1093/mnras/staa2850
  34. R.K. Sachs “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time” Publisher: The Royal Society In Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 270.1340, 1962, pp. 103–126 URL: https://www.jstor.org/stable/2416200
  35. Jeffrey D. Scargle, Zhoujian Cao and Zhi-Chao Zhao “Detection of the Permanent Strain Offset Component of Gravitational-Wave Memory in Black Hole Mergers” arXiv, 2022 DOI: 10.48550/arXiv.2110.07754
  36. Joshua S Speagle “dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences” In Monthly Notices of the Royal Astronomical Society 493.3 Oxford University Press (OUP), 2020, pp. 3132–3158 DOI: 10.1093/mnras/staa278
  37. Andrew Strominger “Lectures on the Infrared Structure of Gravity and Gauge Theory” arXiv, 2018 DOI: 10.48550/arXiv.1703.05448
  38. “Gravitational Memory, BMS Supertranslations and Soft Theorems” In JHEP 01, 2016, pp. 086 DOI: 10.1007/JHEP01(2016)086
  39. “Gravitational-wave astronomy with an uncertain noise power spectral density” In Phys. Rev. Res. 2, 2020, pp. 043298
  40. “Gravitational-wave memory: waveforms and phenomenology” In Physical Review D 98.6, 2018, pp. 064031 DOI: 10.1103/PhysRevD.98.064031
  41. “Inference with finite time series: Observing the gravitational Universe through windows” In Phys. Rev. Res. 3, 2021, pp. 043049
  42. Kip S. Thorne “Gravitational-wave bursts with memory: The Christodoulou effect” Publisher: American Physical Society In Physical Review D 45.2, 1992, pp. 520–524 DOI: 10.1103/PhysRevD.45.520
  43. Shubhanshu Tiwari, Michael Ebersold and Eleanor Z. Hamilton “Leveraging gravitational-wave memory to distinguish neutron star-black hole binaries from black hole binaries” Publisher: American Physical Society In Physical Review D 104.12, 2021, pp. 123024 DOI: 10.1103/PhysRevD.104.123024
  44. “Surrogate models for precessing binary black hole simulations with unequal masses” In Physical Review Research 1.3 American Physical Society (APS), 2019 DOI: 10.1103/physrevresearch.1.033015
  45. Steven Weinberg “Infrared Photons and Gravitons” Publisher: American Physical Society In Physical Review 140.2, 1965, pp. B516–B524 DOI: 10.1103/PhysRev.140.B516
  46. “Enhancing Gravitational Wave Parameter Estimation with Non-Linear Memory: Breaking the Distance-Inclination Degeneracy”, 2024 arXiv:2403.00441 [gr-qc]
  47. “Radiation of gravitational waves by a cluster of superdense stars” ADS Bibcode: 1974AZh….51…30Z In Astronomicheskii Zhurnal 51, 1974, pp. 30 URL: https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com