Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outlook for detecting the gravitational wave displacement and spin memory effects with current and future gravitational wave detectors (2210.16266v4)

Published 28 Oct 2022 in gr-qc, astro-ph.HE, and hep-th

Abstract: Gravitational wave memory effects arise from non-oscillatory components of gravitational wave signals, and they are predictions of general relativity in the nonlinear regime that have close connections to the asymptotic properties of isolated gravitating systems. There are many types of memory effects that have been studied in the literature. In this paper we focus on the "displacement" and "spin" memories, which are expected to be the largest of these effects from sources such as the binary black hole mergers which have already been detected by LIGO and Virgo. The displacement memory is a change in the relative separation of two initially comoving observers due to a burst of gravitational waves, whereas the spin memory is a portion of the change in relative separation of observers with initial relative velocity. As both of these effects are small, LIGO, Virgo, and KAGRA can only detect memory effects from individual events that are much louder (and thus rarer) than those that have been detected so far. By combining data from multiple events, however, these effects could be detected in a population of binary mergers. In this paper, we present new forecasts for how long current and future detectors will need to operate in order to measure these effects from populations of binary black hole systems that are consistent with the populations inferred from the detections from LIGO and Virgo's first three observing runs. We find that a second-generation detector network of LIGO, Virgo, and KAGRA operating at the O4 ("design") sensitivity for 1.5 years and then operating at the O5 ("plus") sensitivity for an additional year can detect the displacement memory. For Cosmic Explorer, we find that displacement memory could be detected for individual loud events, and that the spin memory could be detected in a population within 2 years of observation time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  3. R. Abbott et al. (LIGO Scientific, Virgo), “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  4. B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D 100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
  5. R. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D 103, 122002 (2021c), arXiv:2010.14529 [gr-qc] .
  6. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,”   (2021d), arXiv:2112.06861 [gr-qc] .
  7. B. P. Abbott et al. (LIGO Scientific, Virgo), “Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo,” Astrophys. J. Lett. 882, L24 (2019c), arXiv:1811.12940 [astro-ph.HE] .
  8. R. Abbott et al. (LIGO Scientific, Virgo), “Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog,” Astrophys. J. Lett. 913, L7 (2021e), arXiv:2010.14533 [astro-ph.HE] .
  9. Clifford M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  10. Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Sov. Astron. 18, 17 (1974).
  11. Sabrina Pasterski, Andrew Strominger,  and Alexander Zhiboedov, “New Gravitational Memories,” JHEP 12, 053 (2016), arXiv:1502.06120 [hep-th] .
  12. David A. Nichols, “Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes,” Phys. Rev. D 98, 064032 (2018), arXiv:1807.08767 [gr-qc] .
  13. É. É. Flanagan, A. M. Grant, A. I. Harte,  and D. A. Nichols, “Persistent gravitational wave observables: general framework,” Phys. Rev. D 99, 084044 (2019), arXiv:1901.00021 [gr-qc] .
  14. Alexander M. Grant and David A. Nichols, “Persistent gravitational wave observables: Curve deviation in asymptotically flat spacetimes,” Phys. Rev. D 105, 024056 (2022), arXiv:2109.03832 [gr-qc] .
  15. Andrew Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,”  (2017), arXiv:1703.05448 [hep-th] .
  16. Andrew Strominger and Alexander Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” J. High Energy Phys. 01, 086 (2016), arXiv:1411.5745 [hep-th] .
  17. E. T. Newman and R. Penrose, “Note on the Bondi-Metzner-Sachs group,” J. Math. Phys. 7, 863–870 (1966).
  18. H. Bondi, M. G. J. van der Burg,  and A. W. K. Metzner, “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems,” Proc. R. Soc. Lond. A 269, 21–52 (1962).
  19. R. Sachs, “Asymptotic Symmetries in Gravitational Theory,” Phys. Rev. 128, 2851–2864 (1962).
  20. Éanna É. Flanagan and David A. Nichols, “Conserved charges of the extended Bondi-Metzner-Sachs algebra,” Phys. Rev. D 95, 044002 (2017), arXiv:1510.03386 [hep-th] .
  21. A. Ashtekar, Asymptotic Quantization: Based on the 1984 Naples Lectures, Monographs and Textbooks in Physical Science (Bibliopolis, 1987).
  22. Glenn Barnich and Cedric Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited,” Phys. Rev. Lett. 105, 111103 (2010), arXiv:0909.2617 [gr-qc] .
  23. Miguel Campiglia and Alok Laddha, “Asymptotic symmetries and subleading soft graviton theorem,” Phys. Rev. D 90, 124028 (2014), arXiv:1408.2228 [hep-th] .
  24. Geoffrey Compère, Adrien Fiorucci,  and Romain Ruzziconi, “Superboost transitions, refraction memory and super-Lorentz charge algebra,” J. High Energy Phys. 11, 200 (2018), [Erratum: J. High Energy Phys. 04, 172 (2020)], arXiv:1810.00377 [hep-th] .
  25. R. Epstein, “The generation of gravitational radiation by escaping supernova neutrinos.” Astrophys. J.  223, 1037–1045 (1978).
  26. M. S. Turner, “Gravitational radiation from supernova neutrino bursts,” Nature (London) 274, 565 (1978).
  27. D. Christodoulou, “Nonlinear nature of gravitation and gravitational-wave experiments,” Phys. Rev. Lett. 67, 1486–1489 (1991).
  28. K. S. Thorne, “Gravitational-wave bursts with memory: The Christodoulou effect,” Phys. Rev. D 45, 520–524 (1992).
  29. Moritz Hübner, Paul Lasky,  and Eric Thrane, “Memory remains undetected: Updates from the second LIGO/Virgo gravitational-wave transient catalog,” Phys. Rev. D 104, 023004 (2021), arXiv:2105.02879 [gr-qc] .
  30. Marc Favata, “Nonlinear gravitational-wave memory from binary black hole mergers,” Astrophys. J. Lett. 696, L159–L162 (2009), arXiv:0902.3660 [astro-ph.SR] .
  31. Aaron D. Johnson, Shasvath J. Kapadia, Andrew Osborne, Alex Hixon,  and Daniel Kennefick, “Prospects of detecting the nonlinear gravitational wave memory,” Phys. Rev. D 99, 044045 (2019), arXiv:1810.09563 [gr-qc] .
  32. T. Akutsu et al. (KAGRA), “KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector,” Nature Astron. 3, 35–40 (2019), arXiv:1811.08079 [gr-qc] .
  33. C. S. Unnikrishnan, “IndIGO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India,” Int. J. Mod. Phys. D 22, 1341010 (2013), arXiv:1510.06059 [physics.ins-det] .
  34. Pau Amaro-Seoane et al., “Laser Interferometer Space Antenna,”  (2017), arXiv:1702.00786 [astro-ph.IM] .
  35. Kristina Islo, Joseph Simon, Sarah Burke-Spolaor,  and Xavier Siemens, “Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors,”   (2019), arXiv:1906.11936 [astro-ph.HE] .
  36. J. P. W. Verbiest, S. Osłowski,  and S. Burke-Spolaor, “Pulsar timing array experiments,” in Handbook of Gravitational Wave Astronomy (Springer Singapore, 2021) pp. 1–42.
  37. K. Aggarwal et al. (NANOGrav), “The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory,” Astrophys. J. 889, 38 (2020), arXiv:1911.08488 [astro-ph.HE] .
  38. M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave observatory,” Class. Quant. Grav. 27, 194002 (2010).
  39. David Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,” Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  40. Paul D. Lasky, Eric Thrane, Yuri Levin, Jonathan Blackman,  and Yanbei Chen, “Detecting gravitational-wave memory with LIGO: implications of GW150914,” Phys. Rev. Lett. 117, 061102 (2016), arXiv:1605.01415 [astro-ph.HE] .
  41. Emanuele Berti, Kent Yagi, Huan Yang,  and Nicolás Yunes, “Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown,” Gen. Rel. Grav. 50, 49 (2018), arXiv:1801.03587 [gr-qc] .
  42. Moritz Hübner, Colm Talbot, Paul D. Lasky,  and Eric Thrane, “Measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog,” Phys. Rev. D 101, 023011 (2020), arXiv:1911.12496 [astro-ph.HE] .
  43. B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo, VIRGO), “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Rev. Rel. 21, 3 (2018), arXiv:1304.0670 [gr-qc] .
  44. Oliver M. Boersma, David A. Nichols,  and Patricia Schmidt, “Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo,” Phys. Rev. D 101, 083026 (2020), arXiv:2002.01821 [astro-ph.HE] .
  45. David A. Nichols, “Spin memory effect for compact binaries in the post-Newtonian approximation,” Phys. Rev. D 95, 084048 (2017), arXiv:1702.03300 [gr-qc] .
  46. Alexander M. Grant, “GWForecasts,” https://gitlab.com/alex_grant/forecasts (2023).
  47. R.L. Stratonovich, Topics in the Theory of Random Noise, Mathematics and its applications, Vol. 1 (Gordon and Breach, 1963).
  48. Lee S. Finn, “Detection, measurement and gravitational radiation,” Phys. Rev. D 46, 5236–5249 (1992), arXiv:gr-qc/9209010 .
  49. Eric Thrane and Colm Talbot, “An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models,” Publications of the Astronomical Society of Australia 36, e010 (2019), arXiv:1809.02293 [astro-ph.IM] .
  50. Keefe Mitman, Jordan Moxon, Mark A. Scheel, Saul A. Teukolsky, Michael Boyle, Nils Deppe, Lawrence E. Kidder,  and William Throwe, “Computation of displacement and spin gravitational memory in numerical relativity,” Phys. Rev. D 102, 104007 (2020), arXiv:2007.11562 [gr-qc] .
  51. Luc Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Relativ. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
  52. R. K. Sachs, “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time,” Proc. R. Soc. Lond. A 270, 103–126 (1962).
  53. Abhay Ashtekar, Tommaso De Lorenzo,  and Neev Khera, “Compact binary coalescences: Constraints on waveforms,” Gen. Rel. Grav. 52, 107 (2020), arXiv:1906.00913 [gr-qc] .
  54. Colm Talbot, Eric Thrane, Paul D. Lasky,  and Fuhui Lin, “Gravitational-wave memory: waveforms and phenomenology,” Phys. Rev. D 98, 064031 (2018), arXiv:1807.00990 [astro-ph.HE] .
  55. “py3nj Python package,” https://github.com/fujiisoup/py3nj.
  56. A. G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation,” Phys. Rev. D 44, R2945–R2949 (1991).
  57. Maximiliano Isi, “Parametrizing gravitational-wave polarizations,”  (2022), arXiv:2208.03372 [gr-qc] .
  58. “Overview LAL Gravitational Wave frame definitions,” https://dcc.ligo.org/LIGO-T1800226/public (2022a).
  59. Colm Talbot and Eric Thrane, “Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization,” Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
  60. Colm Talbot, Rory Smith, Eric Thrane,  and Gregory B. Poole, “Parallelized Inference for Gravitational-Wave Astronomy,” Phys. Rev. D 100, 043030 (2019), arXiv:1904.02863 [astro-ph.IM] .
  61. “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.1.6 of 2022-06-30, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
  62. Colm Talbot and Eric Thrane, “Determining the population properties of spinning black holes,” Phys. Rev. D 96, 023012 (2017), arXiv:1704.08370 [astro-ph.HE] .
  63. Maya Fishbach, Daniel E. Holz,  and Will M. Farr, “Does the Black Hole Merger Rate Evolve with Redshift?” Astrophys. J. Lett. 863, L41 (2018), arXiv:1805.10270 [astro-ph.HE] .
  64. Matthew Evans et al., “A Horizon Study for Cosmic Explorer: Science, Observatories, and Community,”   (2021), arXiv:2109.09882 [astro-ph.IM] .
  65. Piero Madau and Mark Dickinson, “Cosmic Star Formation History,” Ann. Rev. Astron. Astrophys. 52, 415–486 (2014), arXiv:1403.0007 [astro-ph.CO] .
  66. Thomas P. Robitaille et al. (Astropy), “Astropy: A Community Python Package for Astronomy,” Astron. Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM] .
  67. A. M. Price-Whelan et al. (Astropy), “The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package,” Astron. J. 156, 123 (2018), arXiv:1801.02634 .
  68. P. A. R. Ade et al. (Planck), “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
  69. “Data Release for ‘Population properties of compact objects from the second LIGO-Virgo Gravitational-Wave Transient Catalog’,” https://dcc.ligo.org/LIGO-P2000434-v3/public (2021).
  70. B. Farr and W. M. Farr, “kombine: a kernel-density-based, embarrassingly parallel ensemble sampler,” https://github.com/bfarr/kombine (2015), in prep.
  71. D. Foreman-Mackey, D. W. Hogg, D. Lang,  and J. Goodman, “emcee: The mcmc hammer,” PASP 125, 306–312 (2013), 1202.3665 .
  72. “Noise curves used for Simulations in the update of the Observing Scenarios Paper,” https://dcc.ligo.org/LIGO-T2000012-v2/public (2022b).
  73. LIGO Scientific Collaboration, “LIGO Algorithm Library - LALSuite,” free software (GPL).
  74. “Cosmic Explorer Strain Sensitivity,” https://dcc.cosmicexplorer.org/CE-T2000017-v5/public (2022).
  75. Evan D Hall and Matthew Evans, “Metrics for next-generation gravitational-wave detectors,” Classical and Quantum Gravity 36, 225002 (2019).
  76. A. Buikema et al., “Sensitivity and performance of the advanced ligo detectors in the third observing run,” Physical Review D 102 (2020), 10.1103/physrevd.102.062003.
  77. Serguei Ossokine et al., “Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation,” Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
  78. Scott E. Field, Chad R. Galley, Jan S. Hesthaven, Jason Kaye,  and Manuel Tiglio, “Fast prediction and evaluation of gravitational waveforms using surrogate models,” Phys. Rev. X 4, 031006 (2014), arXiv:1308.3565 [gr-qc] .
  79. Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Lawrence E. Kidder,  and Harald P. Pfeiffer, “Surrogate model of hybridized numerical relativity binary black hole waveforms,” Phys. Rev. D 99, 064045 (2019b), arXiv:1812.07865 [gr-qc] .
  80. Charles R. Harris et al., “Array programming with NumPy,” Nature 585, 357–362 (2020).
  81. Benjamin P Abbott et al. (LIGO Scientific, Virgo), “A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals,” Classical Quantum Gravity 37, 055002 (2020), arXiv:1908.11170 [gr-qc] .
  82. D. J. A. McKechan, C. Robinson,  and B. S. Sathyaprakash, “A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries,” Class. Quant. Grav. 27, 084020 (2010), arXiv:1003.2939 [gr-qc] .
  83. W. Rudin, Principles of Mathematical Analysis, 3rd ed. (McGraw-Hill, 1976).
Citations (25)

Summary

We haven't generated a summary for this paper yet.