Experimental Hybrid Shadow Tomography and Distillation (2404.11850v1)
Abstract: Characterization of quantum states is a fundamental requirement in quantum science and technology. As a promising framework, shadow tomography shows significant efficiency in estimating linear functions, however, for the challenging nonlinear ones, it requires measurements at an exponential cost. Here, we implement an advanced shadow protocol, so-called hybrid shadow~(HS) tomography, to reduce the measurement cost in the estimation of nonlinear functions in an optical system. We design and realize a deterministic quantum Fredkin gate with single photon, achieving high process fidelity of $0.935\pm0.001$. Utilizing this novel Fredkin gate, we demonstrate HS in the estimations, like the higher-order moments up to 4, and reveal that the sample complexity of HS is significantly reduced compared with the original shadow protocol. Furthermore, we utilize these higher-degree functions to implement virtual distillation, which effectively extracts a high-purity quantum state from two noisy copies. The virtual distillation is also verified in a proof-of-principle demonstration of quantum metrology, further enhancing the accuracy of parameter estimation. Our results suggest that HS is efficient in state characterization and promising for quantum technologies.
- M. Kliesch and I. Roth, PRX Quantum 2, 010201 (2021).
- S. Aaronson, SIAM Journal on Computing 49, STOC18 (2019).
- H.-Y. Huang, R. Kueng, and J. Preskill, Nature Physics 16, 1050 (2020).
- H.-Y. Huang, R. Kueng, and J. Preskill, Physical review letters 127, 030503 (2021).
- Y. Zhou, P. Zeng, and Z. Liu, Phys. Rev. Lett. 125, 200502 (2020).
- A. Ketterer, N. Wyderka, and O. Gühne, Phys. Rev. Lett. 122, 120505 (2019).
- R. J. Garcia, Y. Zhou, and A. Jaffe, Phys. Rev. Research 3, 033155 (2021).
- B. Koczor, Phys. Rev. X 11, 031057 (2021).
- Y. Zhou and Z. Liu, arXiv preprint arXiv:2208.08416 (2022).
- P. Horodecki and A. Ekert, Phys. Rev. Lett. 89, 127902 (2002).
- H.-Y. Hu, S. Choi, and Y.-Z. You, Phys. Rev. Res. 5, 023027 (2023).
- M. Ohliger, V. Nesme, and J. Eisert, New Journal of Physics 15, 015024 (2013).
- X.-D. Yu, S. Imai, and O. Gühne, Phys. Rev. Lett. 127, 060504 (2021b).
- V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
- V. Giovannetti, S. Lloyd, and L. Maccone, Nature photonics 5, 222 (2011).
- H. F. Hofmann, Phys. Rev. Lett. 109, 020408 (2012).
- B. Yoshida and N. Y. Yao, Physical Review X 9, 10.1103/physrevx.9.011006 (2019).
- L. Leone, S. F. Oliviero, and A. Hamma, Physical Review Letters 128, 050402 (2022).
- J. Chen, Y. Yan, and Y. Zhou, arXiv preprint arXiv:2308.01886 10.48550/arXiv.2308.01886 (2023).
- J. Helsen and M. Walter, Physical Review Letters 131, 240602 (2023).
- Y. Zhou and Q. Liu, Quantum 7, 1044 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.