Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Experimental Hybrid Shadow Tomography and Distillation (2404.11850v1)

Published 18 Apr 2024 in quant-ph

Abstract: Characterization of quantum states is a fundamental requirement in quantum science and technology. As a promising framework, shadow tomography shows significant efficiency in estimating linear functions, however, for the challenging nonlinear ones, it requires measurements at an exponential cost. Here, we implement an advanced shadow protocol, so-called hybrid shadow~(HS) tomography, to reduce the measurement cost in the estimation of nonlinear functions in an optical system. We design and realize a deterministic quantum Fredkin gate with single photon, achieving high process fidelity of $0.935\pm0.001$. Utilizing this novel Fredkin gate, we demonstrate HS in the estimations, like the higher-order moments up to 4, and reveal that the sample complexity of HS is significantly reduced compared with the original shadow protocol. Furthermore, we utilize these higher-degree functions to implement virtual distillation, which effectively extracts a high-purity quantum state from two noisy copies. The virtual distillation is also verified in a proof-of-principle demonstration of quantum metrology, further enhancing the accuracy of parameter estimation. Our results suggest that HS is efficient in state characterization and promising for quantum technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. Kliesch and I. Roth, PRX Quantum 2, 010201 (2021).
  2. S. Aaronson, SIAM Journal on Computing 49, STOC18 (2019).
  3. H.-Y. Huang, R. Kueng, and J. Preskill, Nature Physics 16, 1050 (2020).
  4. H.-Y. Huang, R. Kueng, and J. Preskill, Physical review letters 127, 030503 (2021).
  5. Y. Zhou, P. Zeng, and Z. Liu, Phys. Rev. Lett. 125, 200502 (2020).
  6. A. Ketterer, N. Wyderka, and O. Gühne, Phys. Rev. Lett. 122, 120505 (2019).
  7. R. J. Garcia, Y. Zhou, and A. Jaffe, Phys. Rev. Research 3, 033155 (2021).
  8. B. Koczor, Phys. Rev. X 11, 031057 (2021).
  9. Y. Zhou and Z. Liu, arXiv preprint arXiv:2208.08416  (2022).
  10. P. Horodecki and A. Ekert, Phys. Rev. Lett. 89, 127902 (2002).
  11. H.-Y. Hu, S. Choi, and Y.-Z. You, Phys. Rev. Res. 5, 023027 (2023).
  12. M. Ohliger, V. Nesme, and J. Eisert, New Journal of Physics 15, 015024 (2013).
  13. X.-D. Yu, S. Imai, and O. Gühne, Phys. Rev. Lett. 127, 060504 (2021b).
  14. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
  15. V. Giovannetti, S. Lloyd, and L. Maccone, Nature photonics 5, 222 (2011).
  16. H. F. Hofmann, Phys. Rev. Lett. 109, 020408 (2012).
  17. B. Yoshida and N. Y. Yao, Physical Review X 9, 10.1103/physrevx.9.011006 (2019).
  18. L. Leone, S. F. Oliviero, and A. Hamma, Physical Review Letters 128, 050402 (2022).
  19. J. Chen, Y. Yan, and Y. Zhou, arXiv preprint arXiv:2308.01886 10.48550/arXiv.2308.01886 (2023).
  20. J. Helsen and M. Walter, Physical Review Letters 131, 240602 (2023).
  21. Y. Zhou and Q. Liu, Quantum 7, 1044 (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.