Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Nuclear Models from Symbolic Machine Learning (2404.11477v3)

Published 17 Apr 2024 in nucl-th, cs.AI, cs.LG, and nucl-ex

Abstract: Numerous phenomenological nuclear models have been proposed to describe specific observables within different regions of the nuclear chart. However, developing a unified model that describes the complex behavior of all nuclei remains an open challenge. Here, we explore whether novel symbolic Machine Learning (ML) can rediscover traditional nuclear physics models or identify alternatives with improved simplicity, fidelity, and predictive power. To address this challenge, we developed a Multi-objective Iterated Symbolic Regression approach that handles symbolic regressions over multiple target observables, accounts for experimental uncertainties and is robust against high-dimensional problems. As a proof of principle, we applied this method to describe the nuclear binding energies and charge radii of light and medium mass nuclei. Our approach identified simple analytical relationships based on the number of protons and neutrons, providing interpretable models with precision comparable to state-of-the-art nuclear models. Additionally, we integrated this ML-discovered model with an existing complementary model to estimate the limits of nuclear stability. These results highlight the potential of symbolic ML to develop accurate nuclear models and guide our description of complex many-body problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
  2. A. R. Vernon et al., Nature 607, 260 (2022).
  3. J. Karthein et al., arXiv , arXiv:2310.15093 (2023).
  4. S. Akkoyun and A. Yakhelef, Phys. Rev. C 105, 044309 (2022), arXiv:2112.12562 [nucl-th] .
  5. D. Gerwin, Behavioral Science 19, 314 (1974).
  6. M. Schmidt and H. Lipson, Science 324, 81 (2009), https://www.science.org/doi/pdf/10.1126/science.1165893 .
  7. S.-M. Udrescu and M. Tegmark, Science Advances 6 (2020), 10.1126/sciadv.aay2631.
  8. F. Villaescusa-Navarro et al. (CAMELS), Astrophys. J. 915, 71 (2021), arXiv:2010.00619 [astro-ph.CO] .
  9. L. F. Kozachenko and N. N. Leonenko, Problemy Peredachi Informatsii 23, 9 (1987).
  10. A. Alaa and M. Van Der Schaar, in International Conference on Machine Learning (PMLR, 2020) pp. 165–174.
  11. K. Marinova and I. Angeli, “Nuclear charge radii,” International Atomic Energy Agency (IAEA) (2013).
  12. S. Malbrunot-Ettenauer and e. a. Kaufmann, Phys. Rev. Lett. 128, 022502 (2022).
  13. M. Rossi, The Journal of Chemical Physics 154 (2021).
  14. P. A. Seeger, Nuclear Physics 25, 1 (1961).
  15. L. Buskirk, K. Godbey, W. Nazarewicz,  and W. Satula, “Nucleonic shells and nuclear masses,”  (2023), arXiv:2309.16871 [nucl-th] .
  16. I. Angeli and K. Marinova, Atomic Data and Nuclear Data Tables 99, 69 (2013).
  17. D. J. MacKay et al., ASHRAE transactions 100, 1053 (1994).
  18. C. Wilstrup and J. Kasak, arXiv preprint arXiv:2103.15147  (2021).

Summary

We haven't generated a summary for this paper yet.