Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding Beta-Decay Systematics: A Global Statistical Model for Beta^- Halflives (0806.2850v1)

Published 17 Jun 2008 in nucl-th, cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies in which global statistical modeling is pursued within the general framework of machine learning theory, we implement advances in training algorithms designed to improved generalization, in application to the problem of reproducing and predicting the halflives of nuclear ground states that decay 100% by the beta- mode. More specifically, fully-connected, multilayer feedforward artificial neural network models are developed using the Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The predictive performance of models emerging from extensive computer experiments is compared with that of traditional microscopic and phenomenological models as well as with the performance of other learning systems, including earlier neural network models as well as the support vector machines recently applied to the same problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line, and especially those involved in the r-process nucleosynthesis. It is found that the new statistical models can match or even surpass the predictive performance of conventional models for beta-decay systematics and accordingly should provide a valuable additional tool for exploring the expanding nuclear landscape.

Citations (26)

Summary

We haven't generated a summary for this paper yet.