Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self-Ordered Supersolid in Spinor Condensates with Cavity-Mediated Spin-Momentum-Mixing Interactions (2404.11157v1)

Published 17 Apr 2024 in cond-mat.quant-gas and quant-ph

Abstract: Ultracold atoms with cavity-mediated long-range interactions offer a promising platform for investing novel quantum phenomena. Exploiting recent experimental advancements, we propose an experimental scheme to create self-ordered supersolid in spin-$1/2$ condensates confined within an optical cavity. The interplay of cavity and pump fields gives rise to supersolid square and plane wave phases, comprehensively described by the two-component Tavis-Cummings model. We show that the self-ordered supersolid phase exhibits an undamped gapless Goldstone mode over a wide parameter range. This proposal, achievable with current experimental setups utilizing identical laser configurations, is in contrast to the realization of checkerboard supersolidity, which hinges on constructing a $U(1)$ symmetry by utilizing two ${\cal Z}_2$ symmetries with precisely matched atom-cavity coupling in multimode resonators. By employing the superradiant photon-exchange process, we realize for the first time cavity-mediated spin-momentum-mixing interactions between highly correlated spin and momentum modes, analogous to that observed spin-mixing in spin-1 condensates. Our scheme provides a unique platform for realizing spin-momentum squeezing and spatially distributed multipartite entanglement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod. Phys. 85, 299 (2013).
  2. A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Rev. Mod. Phys. 87, 1379 (2015).
  3. A. Reiserer, Colloquium: Cavity-enhanced quantum network nodes, Rev. Mod. Phys. 94, 041003 (2022).
  4. M. Boninsegni and N. V. Prokof’ev, Colloquium: Supersolids: What and where are they? Rev. Mod. Phys. 84, 759 (2012).
  5. E. Kim and M. H. W. Chan, Probable observation of a supersolid helium phase, Nature 427, 225 (2004).
  6. S. Balibar, The enigma of supersolidity, Nature 464, 176 (2010).
  7. D. Y. Kim and M. H. W. Chan, Absence of supersolidity in solid helium in porous vycor glass, Phys. Rev. Lett. 109, 155301 (2012).
  8. G. V. Chester, Speculations on Bose-Einstein condensation and quantum crystals, Phys. Rev. A 2, 256 (1970).
  9. E. P. Gross, Unified theory of interacting bosons, Phys. Rev. 106, 161 (1957).
  10. Y. Deng and S. Yi, Self-ordered supersolid phase beyond Dicke superradiance in a ring cavity, Phys. Rev. Res. 5, 013002 (2023).
  11. P. Karpov and F. Piazza, Light-induced quantum droplet phases of lattice bosons in multimode cavities, Phys. Rev. Lett. 128, 103201 (2022).
  12. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  13. See Supplemental Material for a derivation and discussion .
  14. C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67, 066203 (2003).
  15. A. Baksic and C. Ciuti, Controlling discrete and continuous symmetries in “superradiant” phase transitions with circuit qed systems, Phys. Rev. Lett. 112, 173601 (2014).
  16. M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47, 5138 (1993).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com