Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quasinormal modes and their excitation beyond general relativity (2404.11110v2)

Published 17 Apr 2024 in gr-qc and hep-th

Abstract: The response of black holes to small perturbations is known to be partially described by a superposition of quasinormal modes. Despite their importance to enable strong-field tests of gravity, little to nothing is known about what overtones and quasinormal-mode amplitudes are like for black holes in extensions to general relativity. We take a first step in this direction and study what is arguably the simplest model that allows first-principle calculations to be made: a nonrotating black hole in an effective-field-theory extension of general relativity with cubic-in-curvature terms. Using a phase-amplitude scheme that uses analytical continuation and the Pr\"ufer transformation, we compute, for the first time, the quasinormal overtone frequencies (in this theory) and quasinormal-mode excitation factors (in any theory beyond general relativity). We find that the overtone quasinormal frequencies and their excitation factors are more sensitive than the fundamental mode to the lengthscale $l$ introduced by the higher-derivative terms in the effective field theory. We argue that a description of all overtones cannot be made within the regime of validity of the effective field theory, and we conjecture that this is a general feature of any extension to general relativity that introduces a new lengthscale. We also find that a parametrization of the modifications to the general-relativistic quasinormal frequencies in terms of the ratio between $l$ and the black hole's mass is somewhat inadequate, and we propose a better alternative. As an application, we perform a preliminary study of the implications of the breakdown, in the effective field theory, of the equivalence between the quasinormal mode spectra associated to metric perturbations of polar and axial parity of the Schwarzschild black hole in general relativity. We also present a simple justification for the loss of isospectrality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108, 1063 (1957).
  2. C. V. Vishveshwara, Stability of the Schwarzschild metric, Phys. Rev. D 1, 2870 (1970).
  3. M. Davis and R. Ruffini, Gravitational radiation in the presence of a Schwarzschild black hole. A boundary value search, Lett. Nuovo Cim. 2S2, 1165 (1971).
  4. M. Davis, R. Ruffini, and J. Tiomno, Pulses of gravitational radiation of a particle falling radially into a Schwarzschild black hole, Phys. Rev. D 5, 2932 (1972).
  5. C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. I - Linearized odd-parity radiation, Astrophys. J. 224, 643 (1978).
  6. C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. II. Linearized even parity radiation, Astrophys. J. 230, 870 (1979).
  7. S. Chandrasekhar and S. L. Detweiler, The quasi-normal modes of the Schwarzschild black hole, Proc. Roy. Soc. Lond. A 344, 441 (1975).
  8. F. J. Zerilli, Effective potential for even-parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24, 737 (1970a).
  9. F. J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys. Rev. D 2, 2141 (1970b).
  10. E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986).
  11. Y. Sun and R. H. Price, Excitation of Quasinormal Ringing of a Schwarzschild Black Hole, Phys. Rev. D 38, 1040 (1988).
  12. Y. Sun and R. H. Price, Excitation of Schwarzschild quasinormal modes by collapse, Phys. Rev. D 41, 2492 (1990).
  13. N. Andersson, Excitation of Schwarzschild black hole quasinormal modes, Phys. Rev. D 51, 353 (1995).
  14. H.-P. Nollert and R. H. Price, Quantifying excitations of quasinormal mode systems, J. Math. Phys. 40, 980 (1999), arXiv:gr-qc/9810074 .
  15. K. Glampedakis and N. Andersson, Late time dynamics of rapidly rotating black holes, Phys. Rev. D 64, 104021 (2001), arXiv:gr-qc/0103054 .
  16. E. Berti and V. Cardoso, Quasinormal ringing of Kerr black holes. I. The Excitation factors, Phys. Rev. D 74, 104020 (2006), arXiv:gr-qc/0605118 .
  17. Z. Zhang, E. Berti, and V. Cardoso, Quasinormal ringing of Kerr black holes. II. Excitation by particles falling radially with arbitrary energy, Phys. Rev. D 88, 044018 (2013), arXiv:1305.4306 [gr-qc] .
  18. R. H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5, 2419 (1972).
  19. E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A 402, 285 (1985).
  20. F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 .
  21. S. L. Detweiler, Black holes and gravitational waves. III. The resonant frequencies of rotating holes, Astrophys. J. 239, 292 (1980).
  22. E. Berti, V. Cardoso, and C. M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160 .
  23. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  24. B. P. Abbott et al. (LIGO Scientific, Virgo), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016b), arXiv:1602.03840 [gr-qc] .
  25. C. de Rham, J. Francfort, and J. Zhang, Black Hole Gravitational Waves in the Effective Field Theory of Gravity, Phys. Rev. D 102, 024079 (2020), arXiv:2005.13923 [hep-th] .
  26. K. Glampedakis and N. Andersson, Quick and dirty methods for studying black hole resonances, Class. Quant. Grav. 20, 3441 (2003), arXiv:gr-qc/0304030 .
  27. P. A. Cano and A. Ruipérez, Leading higher-derivative corrections to Kerr geometry, JHEP 05, 189, [Erratum: JHEP 03, 187 (2020)], arXiv:1901.01315 [gr-qc] .
  28. G. Goon, Heavy Fields and Gravity, JHEP 01, 045, [Erratum: JHEP 03, 161 (2017)], arXiv:1611.02705 [hep-th] .
  29. H. O. Silva, A. Ghosh, and A. Buonanno, Black-hole ringdown as a probe of higher-curvature gravity theories, Phys. Rev. D 107, 044030 (2023), arXiv:2205.05132 [gr-qc] .
  30. S. Melville, Causality and quasi-normal modes in the GREFT (2024), arXiv:2401.05524 [gr-qc] .
  31. E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3, 566 (1962).
  32. R. P. Geroch, A. Held, and R. Penrose, A space-time calculus based on pairs of null directions, J. Math. Phys. 14, 874 (1973).
  33. A. Hussain and A. Zimmerman, Approach to computing spectral shifts for black holes beyond Kerr, Phys. Rev. D 106, 104018 (2022), arXiv:2206.10653 [gr-qc] .
  34. V. Moncrief, Gravitational perturbations of spherically symmetric systems. I. The exterior problem., Annals Phys. 88, 323 (1974).
  35. S. Chandrasekhar, On One-Dimensional Potential Barriers Having Equal Reflexion and Transmission Coefficients, Proceedings of the Royal Society of London Series A 369, 425 (1980).
  36. S. Chandrasekhar, On the Potential Barriers Surrounding the Schwarzschild Black-Hole, in Spacetime and Geometry: The Alfred Schild Lectures (1982) pp. 120–146.
  37. R. M. Miura, C. S. Gardner, and M. D. Kruskal, Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion, Journal of Mathematical Physics 9, 1204 (1968).
  38. K. Glampedakis, A. D. Johnson, and D. Kennefick, Darboux transformation in black hole perturbation theory, Phys. Rev. D 96, 024036 (2017), arXiv:1702.06459 [gr-qc] .
  39. M. Lenzi and C. F. Sopuerta, Darboux covariance: A hidden symmetry of perturbed Schwarzschild black holes, Phys. Rev. D 104, 124068 (2021), arXiv:2109.00503 [gr-qc] .
  40. C. de Rham and A. J. Tolley, Causality in curved spacetimes: The speed of light and gravity, Phys. Rev. D 102, 084048 (2020), arXiv:2007.01847 [hep-th] .
  41. N. Andersson, Complex angular momenta and the black hole glory, Class. Quant. Grav. 11, 3003 (1994).
  42. N. Andersson and K. E. Thylwe, Complex angular momentum approach to black hole scattering, Class. Quant. Grav. 11, 2991 (1994).
  43. Y. Decanini, A. Folacci, and B. Jensen, Complex angular momentum in black hole physics and the quasinormal modes, Phys. Rev. D 67, 124017 (2003), arXiv:gr-qc/0212093 .
  44. N. Andersson and S. Linnæus, Quasinormal modes of a Schwarzschild black hole: Improved phase-integral treatment, Phys. Rev. D 46, 4179 (1992).
  45. D. E. Muller, A method for solving algebraic equations using an automatic computer, Math. Tables Aids Comput. 10, 208 (1956).
  46. K. Ahnert and M. Mulansky, Odeint – Solving Ordinary Differential Equations in C++, AIP Conf. Proc. 1389, 1586 (2011).
  47. Boost C++ Libraries, (https://www.boost.org).
  48. P. M. Morse and H. Feshbach, Methods of theoretical physics (International Series in Pure and Applied Physics, McGraw-Hill, New York, 1953).
  49. N. Andersson, On the asymptotic distribution of quasinormal-mode frequencies for Schwarzschild black holes, Classical and Quantum Gravity 10, L61 (1993).
  50. G. B. Cook and M. Zalutskiy, Gravitational perturbations of the Kerr geometry: High-accuracy study, Phys. Rev. D 90, 124021 (2014), arXiv:1410.7698 [gr-qc] .
  51. M. Maggiore, The Physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett. 100, 141301 (2008), arXiv:0711.3145 [gr-qc] .
  52. K. Ioka and H. Nakano, Second and higher-order quasi-normal modes in binary black hole mergers, Phys. Rev. D 76, 061503 (2007), arXiv:0704.3467 [astro-ph] .
  53. H. Nakano and K. Ioka, Second Order Quasi-Normal Mode of the Schwarzschild Black Hole, Phys. Rev. D 76, 084007 (2007), arXiv:0708.0450 [gr-qc] .
  54. M. H.-Y. Cheung et al., Nonlinear Effects in Black Hole Ringdown, Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
  55. K. Mitman et al., Nonlinearities in Black Hole Ringdowns, Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
  56. H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts, Phys. Rev. D 47, 5253 (1993).
  57. L. Motl, An Analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6, 1135 (2003), arXiv:gr-qc/0212096 .
  58. L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7, 307 (2003), arXiv:hep-th/0301173 .
  59. A. Maassen van den Brink, WKB analysis of the Regge-Wheeler equation down in the frequency plane, J. Math. Phys. 45, 327 (2004), arXiv:gr-qc/0303095 .
  60. N. Andersson and C. J. Howls, The Asymptotic quasinormal mode spectrum of nonrotating black holes, Class. Quant. Grav. 21, 1623 (2004), arXiv:gr-qc/0307020 .
  61. S. Mano, H. Suzuki, and E. Takasugi, Analytic solutions of the Regge-Wheeler equation and the post-Minkowskian expansion, Prog. Theor. Phys. 96, 549 (1996a), arXiv:gr-qc/9605057 .
  62. S. Mano, H. Suzuki, and E. Takasugi, Analytic solutions of the Teukolsky equation and their low frequency expansions, Prog. Theor. Phys. 95, 1079 (1996b), arXiv:gr-qc/9603020 .
  63. R. Fujita and H. Tagoshi, New numerical methods to evaluate homogeneous solutions of the Teukolsky equation, Prog. Theor. Phys. 112, 415 (2004), arXiv:gr-qc/0410018 .
  64. N. Andersson, Evolving test fields in a black hole geometry, Phys. Rev. D 55, 468 (1997), arXiv:gr-qc/9607064 .
  65. A. Le Tiec and L. Blanchet, The Close-limit Approximation for Black Hole Binaries with Post-Newtonian Initial Conditions, Class. Quant. Grav. 27, 045008 (2010), arXiv:0910.4593 [gr-qc] .
  66. J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Pseudospectrum and Black Hole Quasinormal Mode Instability, Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
  67. J. M. Aguirregabiria and C. V. Vishveshwara, Scattering by black holes: A Simulated potential approach, Phys. Lett. A 210, 251 (1996).
  68. H.-P. Nollert, About the significance of quasinormal modes of black holes, Phys. Rev. D 53, 4397 (1996), arXiv:gr-qc/9602032 .
  69. D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav. 41, 2415 (2009), arXiv:0807.0824 [gr-qc] .
  70. J. M. Martin-Garcia, R. Portugal, and L. R. U. Manssur, The Invar Tensor Package, Comput. Phys. Commun. 177, 640 (2007), arXiv:0704.1756 [cs.SC] .
  71. J. M. Martin-Garcia, D. Yllanes, and R. Portugal, The Invar tensor package: Differential invariants of Riemann, Comput. Phys. Commun. 179, 586 (2008), arXiv:0802.1274 [cs.SC] .
  72. J. M. Martin-Garcia, xPerm: fast index canonicalization for tensor computer algebra, Computer Physics Communications 179, 597 (2008), arXiv:0803.0862 [cs-sc] .
  73. xAct: Efficient tensor computer algebra for the Wolfram Language, http://www.xact.es/.
  74. Black Hole Perturbation Toolkit, (bhptoolkit.org).
  75. M. Campanelli, C. O. Lousto, and Y. Zlochower, Algebraic Classification of Numerical Spacetimes and Black-Hole-Binary Remnants, Phys. Rev. D 79, 084012 (2009), arXiv:0811.3006 [gr-qc] .
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com