Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

First double-differential cross section measurement of neutral-current $π^0$ production in neutrino-argon scattering in the MicroBooNE detector (2404.10948v3)

Published 16 Apr 2024 in hep-ex

Abstract: We report the first double-differential cross section measurement of neutral-current neutral pion (NC$\pi0$) production in neutrino-argon scattering, as well as single-differential measurements of the same channel in terms of final states with and without protons. The kinematic variables of interest for these measurements are the $\pi0$ momentum and the $\pi0$ scattering angle with respect to the neutrino beam. A total of 4971 candidate NC$\pi0$ events fully-contained within the MicroBooNE detector are selected using data collected at a mean neutrino energy of $\sim 0.8$~GeV from $6.4\times10{20}$ protons on target from the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. After extensive data-driven model validation to ensure unbiased unfolding, the Wiener-SVD method is used to extract nominal flux-averaged cross sections. The results are compared to predictions from commonly used neutrino event generators, which tend to overpredict the measured NC$\pi0$ cross section, especially in the 0.2-0.5~GeV/c $\pi0$ momentum range and at forward scattering angles. Events with at least one proton present in the final state are also underestimated. This data will help improve the modeling of NC$\pi0$ production, which represents a major background in measurements of charge-parity violation in the neutrino sector and in searches for new physics beyond the Standard Model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. K. Abe et al. (T2K Collaboration), Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580, 339 (2020).
  2. C. Hagedorn et al., CP violation in the lepton sector and implications for leptogenesis, Int. J. Mod. Phys. A 33, 1842006 (2018).
  3. X. Qian and P. Vogel, Neutrino Mass Hierarchy, Prog. Part. Nucl. Phys. 83, 1 (2015), arXiv:1505.01891 [hep-ex] .
  4. P. Abratenko et al. (MicroBooNE Collaboration), Search for Neutrino-Induced Neutral-Current ΔΔ\mathrm{\Delta}roman_Δ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess under a Single-Photon Hypothesis, Phys. Rev. Lett. 128, 111801 (2022a).
  5. C. Kullenberg et al. (NOMAD Collaboration), A search for single photon events in neutrino interactions, Phys. Lett. B 706, 268 (2012).
  6. K. Abe et al. (T2K Collaboration), Search for neutral-current induced single photon production at the ND280 near detector in T2K, J. Phys. G 46, 08LT01 (2019).
  7. P. Abratenko et al. (MicroBooNE Collaboration), First measurement of η𝜂\etaitalic_η meson production in neutrino interactions on argon with MicroBooNE, Phys. Rev. Lett. 132, 151801 (2024a), arXiv:2305.16249 [hep-ex] .
  8. M. A. Acero et al., White Paper on Light Sterile Neutrino Searches and Related Phenomenology (2023), Snowmass report, arXiv:2203.07323 [hep-ex] .
  9. C. Giunti and T. Lasserre, eV-Scale Sterile Neutrinos, Annu. Rev. Nucl. Part. Sci. 69, 163 (2019).
  10. B. Batell et al., Dark Sector Studies with Neutrino Beams (2022), Contribution to Snowmass 2021, arXiv:2207.06898 [hep-ph] .
  11. C. A. Argüelles et al., New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter, Rep. Prog. Phys. 83, 124201 (2020).
  12. P. Abratenko et al. (MicroBooNE Collaboration), First constraints on light sterile neutrino oscillations from combined appearance and disappearance searches with the MicroBooNE detector, Phys. Rev. Lett. 130, 011801 (2023a).
  13. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Updated MiniBooNE neutrino oscillation results with increased data and new background studies, Phys. Rev. D 103, 052002 (2021).
  14. K. Abe et al. (T2K Collaboration), Improved constraints on neutrino mixing from the T2K experiment with 3.13×10213.13superscript10213.13\times{}{10}^{21}3.13 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT protons on target, Phys. Rev. D 103, 112008 (2021).
  15. M. A. Acero et al. (The NOν𝜈\nuitalic_νA Collaboration), Improved measurement of neutrino oscillation parameters by the NOν𝜈\nuitalic_νA experiment, Phys. Rev. D 106, 032004 (2022).
  16. P. Adamson and others. (MINOS+limit-fromMINOS\mathrm{MINOS}+roman_MINOS + Collaboration), Precision Constraints for Three-Flavor Neutrino Oscillations from the Full MINOS+limit-fromMINOS\mathrm{MINOS}+roman_MINOS + and MINOS Dataset, Phys. Rev. Lett. 125, 131802 (2020).
  17. P. Abratenko et al. (MicroBooNE collaboration), First search for dark-trident processes using the MicroBooNE detector (2023b), arXiv:2312.13945 [hep-ex] .
  18. A. M. Abdullahi et al., A panorama of new-physics explanations to the MiniBooNE excess (2023), arXiv:2308.02543 [hep-ph] .
  19. C. Cesarotti et al., New μ𝜇\muitalic_μ Forces From νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT Sources (2023), arXiv:2311.10829 [hep-ph] .
  20. D. Rein and L. M. Sehgal, Neutrino-excitation of baryon resonances and single pion production, Ann. Phys. 133, 79 (1981).
  21. G. Fogli and G. Nardulli, Neutral current induced one-pion production: A new model and its comparison with experiment, Nucl. Phys. B 165, 162 (1980).
  22. O. Lalakulich, E. A. Paschos, and G. Piranishvili, Resonance production by neutrinos: The second resonance region, Phys. Rev. D 74, 014009 (2006).
  23. D. Rein and L. M. Sehgal, Coherent π0superscript𝜋0\pi^{0}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production in neutrino reactions, Nucl. Phys. B 223, 29 (1983).
  24. T. Leitner, L. Alvarez-Ruso, and U. Mosel, Neutral current neutrino-nucleus interactions at intermediate energies, Phys. Rev. C 74, 065502 (2006).
  25. O. Lalakulich and U. Mosel, Comparison of GiBUU calculations with MiniBooNE pion production data (2013), Proceedings of the NuInt12 Workshop, arXiv:1304.2409 [nucl-th] .
  26. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Measurement of νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT and ν¯μsubscript¯𝜈𝜇{\overline{\nu}}_{\mu}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT induced neutral current single π0superscript𝜋0{\pi}^{0}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production cross sections on mineral oil at Eν∼𝒪similar-tosubscript𝐸𝜈𝒪{E}_{\nu}\sim\mathcal{O}italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ∼ caligraphic_O (1 GeV), Phys. Rev. D 81, 013005 (2010).
  27. P. Abratenko et al. (MicroBooNE Collaboration), Measurement of neutral current single π0superscript𝜋0{\pi}^{0}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production on argon with the MicroBooNE detector, Phys. Rev. D 107, 012004 (2023c).
  28. R. Acciarri et al. (ArgoNeuT Collaboration), Measurement of νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT and ν¯μsubscript¯𝜈𝜇{\overline{\nu}}_{\mu}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT neutral current π0→γ⁢γ→superscript𝜋0𝛾𝛾{\pi}^{0}\rightarrow\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ production in the ArgoNeuT detector, Phys. Rev. D 96, 012006 (2017a).
  29. C. Rubbia, The liquid-argon time projection chamber: a new concept for neutrino detectors, Tech. Rep. CERN-EP-INT-77-8 (1977).
  30. H. H. Chen et al., A Neutrino detector sensitive to rare processes. I. A Study of neutrino electron reactions, Tech. Rep. FERMILAB-PROPOSAL-0496 (1976).
  31. W. Willis and V. Radeka, Liquid-argon ionization chambers as total-absorption detectors, Nucl. Instrum. Meth. A 120, 221 (1974).
  32. D. R. Nygren, The Time Projection Chamber: A New 4 π𝜋\piitalic_π Detector for Charged Particles, Tech. Rep. PEP-0144 (SLAC, 1974).
  33. F. Cavanna, A. Ereditato, and B. T. Fleming, Advances in liquid argon detectors, Nucl. Instrum. Meth. A 907, 1 (2018).
  34. P. Abratenko et al. (MicroBooNE Collaboration), Search for an anomalous excess of charged-current νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions without pions in the final state with the MicroBooNE experiment, Phys. Rev. D 105, 112004 (2022b).
  35. P. Abratenko et al. (MicroBooNE Collaboration), Search for an anomalous excess of inclusive charged-current νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions in the MicroBooNE experiment using Wire-Cell reconstruction, Phys. Rev. D 105, 112005 (2022c).
  36. P. Abratenko et al. (MicroBooNE Collaboration), Search for an anomalous excess of charged-current quasielastic νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction, Phys. Rev. D 105, 112003 (2022d).
  37. P. Abratenko et al. (MicroBooNE Collaboration), Search for an excess of electron neutrino interactions in MicroBooNE using multiple final-state topologies, Phys. Rev. Lett. 128, 241801 (2022e).
  38. R. Acciarri et al. (MicroBooNE Collaboration), Design and construction of the MicroBooNE detector, J. Instrum. 12 (02), P02017.
  39. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Neutrino flux prediction at MiniBooNE, Phys. Rev. D 79, 072002 (2009).
  40. P. Abratenko et al. (MicroBooNE Collaboration), First demonstration of 𝒪⁢(1⁢ ⁢ns)𝒪1 ns\mathcal{O}(1\text{ }\mathrm{ns})caligraphic_O ( 1 roman_ns ) timing resolution in the MicroBooNE liquid argon time projection chamber, Phys. Rev. D 108, 052010 (2023d).
  41. R. Acciarri et al. (MicroBooNE Collaboration), Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC, J. Instrum. 12 (08), P08003, arXiv:1705.07341 [physics.ins-det] .
  42. C. Adams et al. (MicroBooNE Collaboration), Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation, J. Instrum. 13 (07), P07006, arXiv:1802.08709 [physics.ins-det] .
  43. C. Adams et al. (MicroBooNE Collaboration), Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE, J. Instrum. 13 (07), P07007, arXiv:1804.02583 [physics.ins-det] .
  44. X. Qian et al., Three-dimensional Imaging for Large LArTPCs, J. Instrum. 13 (05), P05032, arXiv:1803.04850 [physics.ins-det] .
  45. P. Abratenko et al. (MicroBooNE Collaboration), Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation, J. Instrum. 17 (01), P01037.
  46. B. Graham, M. Engelcke, and L. van der Maaten, 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018) pp. 9224–9232.
  47. M. Miyajima et al., Average energy expended per ion pair in liquid argon, Phys. Rev. A 9, 1438 (1974).
  48. PSTAR at NIST: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.
  49. C. Adams et al. (MicroBooNE Collaboration), Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons, J. Instrum. 15 (03), P03022.
  50. S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).
  51. L. Alvarez-Ruso et al. (GENIE Collaboration), Recent highlights from GENIE v3, Eur. Phys. J. ST 230, 4449 (2021).
  52. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614, 87 (2010), arXiv:0905.2517 [hep-ph] .
  53. K. Abe et al. (T2K Collaboration), Measurement of double-differential muon neutrino charged-current interactions on C88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPTH88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT without pions in the final state using the T2K off-axis beam, Phys. Rev. D 93, 112012 (2016).
  54. P. Abratenko et al. (MicroBooNE Collaboration), New CC0⁢πCC0𝜋\mathrm{CC}0\piCC0 italic_π GENIE model tune for MicroBooNE, Phys. Rev. D 105, 072001 (2022g).
  55. E. Snider and G. Petrillo, LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors, J. Phys. Conf. Ser 898, 042057 (2017).
  56. P. Abratenko et al. (MicroBooNE Collaboration), Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector, Phys. Rev. Appl. 15, 064071 (2021b).
  57. T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) p. 785–794.
  58. P. Abratenko et al. (MicroBooNE Collaboration), Inclusive cross section measurements in final states with and without protons for charged-current νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT-Ar scattering in MicroBooNE, arXiv preprint  (2024b), arXiv:2402.19216 [hep-ex] .
  59. C. Patrignani et al. (Particle Data Group), Review of Particle Physics, Chin. Phys. C40, 100001 (2016).
  60. B. P. Roe, Statistical errors in Monte Carlo estimates of systematic errors, Nucl. Instrum. Meth. A 570, 159 (2007).
  61. P. Abratenko et al. (MicroBooNE Collaboration), Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data, Eur. Phys. J. C 82, 454 (2022h).
  62. P. Abratenko et al. (MicroBooNE Collaboration), First Measurement of Energy-Dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector, Phys. Rev. Lett. 128, 151801 (2022i).
  63. M. R. Chernick et al., International Encyclopedia of Statistical Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011) pp. 169–174.
  64. W. Tang et al., Data Unfolding with Wiener-SVD Method, J. Instrum. 12 (10), P10002, arXiv:1705.03568 [physics.data-an] .
  65. L. Koch and S. Dolan, Treatment of flux shape uncertainties in unfolded, flux-averaged neutrino cross-section measurements, Phys. Rev. D 102, 113012 (2020).
  66. S. Gardiner, Mathematical methods for neutrino cross-section extraction, arXiv preprint  (2024), FERMILAB-PUB-23-692-CSAID, arXiv:2401.04065 [hep-ex] .
  67. M. L. Eaton, Multivariate Statistics: a Vector Space Approach (John Wiley and Sons, 1983) pp. 116–117.
  68. P. Abratenko et al. (MicroBooNE Collaboration), First simultaneous measurement of differential muon-neutrino charged-current cross sections on argon for final states with and without protons using MicroBooNE data, arXiv preprint  (2024c), arXiv:2402.19281 [hep-ex] .
  69. P. Abratenko et al. (MicroBooNE Collaboration), Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector (2023e), arXiv:2307.06413 [hep-ex] .
  70. T. Golan, J. Sobczyk, and J. Żmuda, NuWro: the Wrocław Monte Carlo Generator of Neutrino Interactions, Nucl. Phys. B Proc. Suppl. 229-232, 499 (2012).
  71. O. Buss et al., Transport-theoretical description of nuclear reactions, Phys. Rep. 512, 1 (2012).
  72. Y. Hayato and L. Pickering, The NEUT neutrino interaction simulation program library, Eur. Phys. J. ST 230, 4469 (2021).
  73. P. Stowell et al., NUISANCE: a neutrino cross-section generator tuning and comparison framework, J. Instrum. 12 (01), P01016.
  74. B. Krusche et al., Photoproduction of π𝜋\piitalic_π mesons from nuclei, Eur. Phys. J. A 22, 277–291 (2004).
  75. S. Dytman et al., Comparison of validation methods of simulations for final state interactions in hadron production experiments, Phys. Rev. D 104, 053006 (2021), arXiv:2103.07535 [hep-ph] .
  76. O. Lalakulich and E. A. Paschos, Resonance production by neutrinos: J=3/2𝐽32J=3/2italic_J = 3 / 2 resonances, Phys. Rev. D 71, 074003 (2005).
  77. S. J. Barish et al., Study of neutrino interactions in hydrogen and deuterium. II. Inelastic charged-current reactions, Phys. Rev. D 19, 2521 (1979).
  78. G. M. Radecky et al., Study of single-pion production by weak charged currents in low-energy ν⁢d𝜈𝑑\nu ditalic_ν italic_d interactions, Phys. Rev. D 25, 1161 (1982).
  79. T. Kitagaki et al., Study of ν⁢d→μ−⁢p⁢ps→𝜈𝑑superscript𝜇𝑝subscript𝑝𝑠\nu d\rightarrow{\mu}^{-}p{p}_{s}italic_ν italic_d → italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p italic_p start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ν⁢d→μ−⁢Δ++⁢(1232)⁢ns→𝜈𝑑superscript𝜇superscriptΔabsent1232subscript𝑛𝑠\nu d\rightarrow{\mu}^{-}{\Delta}^{++}(1232){n}_{s}italic_ν italic_d → italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ( 1232 ) italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT using the BNL 7-foot deuterium-filled bubble chamber, Phys. Rev. D 42, 1331 (1990).
  80. C. Wilkinson et al., Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production, Phys. Rev. D 90, 112017 (2014).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.