Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials (2404.10746v3)
Abstract: Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic simulations, and recently published universal MLIPs, pre-trained on large datasets, have demonstrated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits their applicability to chemically disordered systems requiring large simulation cells or to sample-intensive statistical methods. Here, we report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural network MLIPs represent discrete elements as real-valued tensors. The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the compositional states of materials. The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights. With this modification, we propose methodologies for optimizing the composition of solid solutions towards target macroscopic properties, characterizing order and disorder in multicomponent oxides, and conducting alchemical free energy simulations to quantify the free energy of vacancy formation and composition changes. The approach offers an avenue for extending the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the phase stability of complex materials systems.
- D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods (Cambridge University Press, 2009).
- T. W. Ko and S. P. Ong, Recent advances and outstanding challenges for machine learning interatomic potentials, Nat. Comput. Sci. 3, 998 (2023).
- J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
- B. Cheng, Cartesian atomic cluster expansion for machine learning interatomic potentials (2024), arXiv:2402.07472 [physics.comp-ph] .
- C. Chen and S. P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nat. Comput. Sci. 2, 718 (2022).
- O. A. von Lilienfeld, R. D. Lins, and U. Rothlisberger, Variational particle number approach for rational compound design, Phys. Rev. Lett. 95, 153002 (2005).
- O. A. von Lilienfeld and M. E. Tuckerman, Molecular grand-canonical ensemble density functional theory and exploration of chemical space, J. Chem. Phys. 125, 154104 (2006).
- B. Huang and O. A. von Lilienfeld, Ab initio machine learning in chemical compound space, Chem. Rev. 121, 10001 (2021).
- M. J. Willatt, F. Musil, and M. Ceriotti, Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements, Phys. Chem. Chem. Phys. 20, 29661 (2018).
- C. Chipot and A. Pohorille, Free Energy Calculations, Springer Series in Chemical Physics, Vol. 86 (Springer, 2007).
- M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, 2nd ed. (Oxford University Press, 2023).
- P. Y. Chew and A. Reinhardt, Phase diagrams—why they matter and how to predict them, J. Chem. Phys. 158, 030902 (2023).
- R. Jinnouchi, F. Karsai, and G. Kresse, Making free-energy calculations routine: combining first principles with machine learning, Phys. Rev. B 101, 060201 (2020).
- S. Boresch and M. Karplus, The role of bonded terms in free energy simulations: 1. theoretical analysis, J. Phys. Chem. A 103, 103 (1999a).
- S. Boresch and M. Karplus, The role of bonded terms in free energy simulations. 2. calculation of their influence on free energy differences of solvation, J. Phys. Chem. A 103, 119 (1999b).
- M. Aldeghi and C. W. Coley, A graph representation of molecular ensembles for polymer property prediction, Chem. Sci. 13, 10486 (2022).
- M. Lusi, Engineering crystal properties through solid solutions, Cryst. Growth Des. 18, 3704 (2018).
- L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome, Z. Physik 5, 17 (1921).
- A. R. Denton and N. W. Ashcroft, Vegard’s law, Phys. Rev. A 43, 3161 (1991).
- J. G. Kirkwood, Statistical mechanics of fluid mixtures, J. Chem. Phys. 3, 300 (1935).
- M. de Koning, Optimizing the driving function for nonequilibrium free-energy calculations in the linear regime: A variational approach, J. Chem. Phys. 122, 104106 (2005).
- R. Freitas, M. Asta, and M. de Koning, Nonequilibrium free-energy calculation of solids using LAMMPS, Comput. Mater. Sci. 112, 333 (2016).
- B. Cheng and M. Ceriotti, Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids, Phys. Rev. B 97, 054102 (2018).
- M. de Koning, A. Antonelli, and S. Yip, Optimized free-energy evaluation using a single reversible-scaling simulation, Phys. Rev. Lett. 83, 3973 (1999).
- D. Frenkel and A. J. Ladd, New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres, J. Chem. Phys. 81, 3188 (1984).
- E. Fransson, J. Wiktor, and P. Erhart, Phase transitions in inorganic halide perovskites from machine-learned potentials, J. Phys. Chem. C 127, 13773 (2023).
- H. Lyu, H. Su, and Z. Lin, Two-stage dynamic transformation from δ𝛿\deltaitalic_δ- to α𝛼\alphaitalic_α-CsPbI33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, J. Phys. Chem. Lett. 15, 2228 (2024).
- R. W. Zwanzig, High-temperature equation of state by a perturbation method. I. Nonpolar gases, J. Chem. Phys. 22, 1420 (1954).
- W. Wang, S. Axelrod, and R. Gómez-Bombarelli, Differentiable molecular simulations for control and learning (2020), arXiv:2003.00868 [physics.comp-ph] .
- A. S. Nemirovsky and D. B. Yudin, Problem complexity and method efficiency in optimization (John Wiley & Sons, Ltd., 1983).
- J. Kivinen and M. K. Warmuth, Exponentiated gradient versus gradient descent for linear predictors, Inf. Comput. 132, 1 (1997).
- M. de Koning and A. Antonelli, Einstein crystal as a reference system in free energy estimation using adiabatic switching, Phys. Rev. E 53, 465 (1996).
- E. Vanden-Eijnden and G. Ciccotti, Second-order integrators for Langevin equations with holonomic constraints, Chem. Phys. Lett. 429, 310 (2006).
- S. Melchionna, G. Ciccotti, and B. Lee Holian, Hoover NPT dynamics for systems varying in shape and size, Mol. Phys. 78, 533 (1993).
- Juno Nam (10 papers)
- Jiayu Peng (9 papers)
- Rafael Gómez-Bombarelli (34 papers)